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EXECUTIVE SUMMARY  

This deliverable presents an initial description of the radio resource management (RRM) solutions for dense in-X 

subnetworks studied in 6G-SHINE, including preliminary results. The document explores innovative strategies for 

sub-band allocation and power control using centralized, distributed, and hybrid methods, aiming at boosting 

spectral efficiency and maintaining reliable service under stringent Quality of Service (QoS) parameters.  

Centralized solutions rely on the presence of a parent network able to receive channel state information from all 

subnetworks in its coverage areas; while distributed and hybrid solutions refer to the cases where decisions are 

taken autonomously at the subnetwork only, or partly between subnetworks and parent network, respectively.  

The adoption of advanced machine learning models –including deep neural networks and message-passing graph 

neural networks- is highlighted as a promising approach for managing the complexities of dynamic interference, 

thereby enhancing overall network performance in the emerging 6G ecosystem. In particular, centralized deep 

neural network approaches for sub-band allocation are shown to improve the amount of subnetwork coping with 

predefined data rate targets with respect to heuristic solutions while significantly reducing the computational 

complexity. A combination of centralized sequential iterative sub-band allocation (SISA) and distributed Greedy 

algorithm is shown to be effective in addressing the case where part of the subnetworks is not able to report their 

channel state information to the parent network. 

A goal-oriented approach to RRM, which integrates control systems’ key performance indicators (KPIs) alongside 

traditional communication metrics, is also discussed. A proposal for joint radio resource management and control 

design based on reinforcement learning is formulated. 

Furthermore, the possibility of using an evolution of the NR side link framework for enabling intra- and inter-

subnetwork signaling is extensively studied. An enhancement based on sub-band pool reservation is proposed, 

and the presence of in-band interference is highlighted as a potential performance-limiting factor to be efficiently 

counteracted.  Promising approaches for dealing with external or uncoordinated interference (e.g., jammers, 

impulsive noise) relying on autoencoders and detector enhancements are also introduced. 
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1 INTRODUCTION  

This document presents preliminary studies on managing radio resources for in-X subnetworks, focusing on the 

intricate balance between accommodating legitimate users’ needs and combating interference from other 

legitimate entities or external (including malicious) entities.  

Management of radio resources and parameters, such as transmit power, time and frequency resources, precoder, 

and modulation, is a complex multi-objective optimisation problem further compounded by the unique challenges 

posed by signal blockage, interference from network densification, and susceptibility to malicious attacks. 

A factor ~x10 densification with respect to 5G is indeed expected in 6G [1]. The inherently dense and mobile nature 

of subnetwork deployments, such as vehicles in congested traffic or crowded events attended by humans, gives 

rise to extensive and rapidly fluctuating interference patterns. This dynamic landscape amplifies the complexity of 

radio resource management far beyond that of traditional wireless setups characterised by static base stations and 

lower cell densities. 

Leveraging the parent network visibility of the operational environment enables more informed decisions 

regarding radio resource management for each subnetwork. This approach promises more efficient spectrum 

utilisation but is subject to practical constraints related to communication between subnetworks and the wider 

network. Challenges include control overhead, quantisation of channel state information, and delays in delivering 

such information. 

While subnetworks may seamlessly integrate into the larger 6G infrastructure and offload the broader network 

the most demanding services, they must maintain the capability to operate autonomously when connectivity with 

the broader network is intermittent or absent, particularly in scenarios involving life-critical services (e.g., brake 

control in vehicles). Some of the subnetworks should possess the capability to sense the available spectrum 

resources and dynamically select the optimum resources accordingly. In the case of a lack of connection with the 

broader network, subnetworks should independently determine their optimal radio resources, possibly without 

the need for explicit signaling between them. 

Beyond the realm of legitimate interference, jamming remains a significant concern, especially for life-critical 

dependent applications. While the physical layer design is intended to bolster resistance against jamming, it must 

be complemented by methods for detecting and mitigating jamming attacks. It is crucial to differentiate jamming 

attacks from legitimate interference since response mechanisms can vary. 

 

1.1 GENERAL INTRO ON PROPOSED SOLUTIONS 

The solutions presented in this document are a collaborative effort to address the complex challenges inherent in 

managing radio resources in dense subnetwork scenarios, considering legitimate and external types of 

interference. Central to the presented approach is the recognition of diverse operational contexts and 

requirements encountered in real-world deployments. As such, our solutions encompass a spectrum of 

methodologies ranging from centralized to distributed and hybrid approaches, each tailored to suit specific use 

cases and environmental conditions. 

In the description of the methods, the nomenclature currently being defined in WP2 will be adopted, referring to 

the relevant subnetwork components. For the work carried out in D4.1, the following elements are relevant: 

  

• Element with High Capabilities (HC). An element with high capabilities is a device/node with increased 

capabilities in terms of networking and computation. Such a node might act as the central communication 

node in a subnetwork and also might offer compute resources to other devices in the subnetwork. 

Multiple such HCs can be installed in a single subnetwork. An HC device can be a user equipment as 

defined by 3GPP or a non-3GPP device. 
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• Element with Low Capabilities (LC). An element with low capabilities is similar to an HC but has limited 

capabilities in terms of networking and computation. This can reduce the functionalities that the device 

provides to the subnetwork. Also, the device might not be connected to the 6G base station. In a 

hierarchical or nested subnetwork, the LC might act as an aggregator. An LC device can be a user 

equipment defined by 3GPP or a non-3GPP device. 

• Subnetwork Element (SNE). Subnetwork elements are computationally constrained devices that have 

limited form factor and cost footprint and include devices such as sensors/actuators. A SNE device can be 

a user equipment as defined by 3GPP or a non-3GPP device.  

 

We refer to deliverable D2.2 for a thorough description of all subnetwork elements [2]. 

To ensure clarity and coherence, this document is structured to systematically illuminate the key aspects of each 

proposed solution. It begins by providing an overview of the general context enveloping RRM within subnetworks, 

thereby laying a foundation for subsequent discussions.  

The reference deployment for the topics discussed in this deliverable is depicted in Figure 1, and comprises various 

technical building blocks. At the centre of this architecture, there is a 6G base station (6G BS), which acts as a 

parent network and integrates several essential functionalities. Within the 6G BS, diverse elements may exist, 

including compute nodes primed for RRM computations and components facilitating the offloading of certain 

functions. Augmenting this architecture are entities (EN) such as robots, production modules, or vehicles, each 

potentially containing one or more subnetworks (SN). Within these subnetworks, high-capability elements (HCs) 

serve as central communication nodes. The HCs should have the capabilities to manage the radio resources 

autonomously in case they are not aided by the parent 6G network. 

The deployment scenario dictates the choice of the RRM approach. For subnetworks seamlessly integrated with 

the umbrella network, centralized RRM methodologies are employed at the 6G BS. Conversely, subnetworks with 

limited or unreliable connections necessitate the adoption of distributed or hybrid approaches, enabling localised 

RRM and interference management within one or more entities. Chapter 2 elaborates on this spectrum of 

solutions, outlining strategies tailored to diverse deployment contexts. This chapter focuses on sub-band allocation 

and power control as the most effective domains for resource management. 

Traditionally, RRM solutions rely on full channel state information (CSI) or other communication-related metrics, 

optimising network performance. However, in certain application contexts, performance can be optimised not 

only based on communication metrics but rather on metrics related to the specific application/service (e.g., control 

cost). Chapter 3 delves into this refined interaction, exploring methodologies that go beyond communication-

oriented only solutions to deliver integrated optimal solutions. 

Additionally, alongside algorithmic solutions, the empowerment of subnetworks to autonomously tackle 

interference challenges and RRM necessitates enabling technologies providing the required communication within 

a subnetwork, as well as for communication among subnetworks and between subnetworks and umbrella 

networks. Chapter 4 delves into a potential enabler for inter- and intra-subnetwork communication based on the 

evolution of the NR sidelink framework, including subnetwork resource pool reservation. Mechanisms for reducing 

the impact of the resulting in-band emissions are discussed. 

Beyond the legitimate interference from other ENs, subnetworks may suffer from interferences created by other 

radio technologies active in the same location (in case they are operating over the same spectrum), and potential 

malicious interferers (e.g., jammers). While the physical layer is fortified to withstand jamming, the RRM modules 

must be equipped with robust detection and mitigation strategies. Chapter 5 presents potential solutions for 

detecting and mitigating such external interferers, using methods such as autoencoders and detector 

enhancements. 
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It is imperative to underscore that the concepts and results presented in this document are preliminary. While they 

offer valuable insights into the efficacy and feasibility of our proposed solutions, they represent only an overview 

of ongoing research and development efforts. A more comprehensive and elaborate exposition, along with a 

thorough performance analysis, will be provided in deliverable D4.3, wherein we delve deeper into each solution’s 

intricacies and empirical findings. 

FIGURE 1: REFERENCE DEPLOYMENT FOR THE METHODS STUDIED IN THIS DELIVERABLE. 

 

1.2 POSITIONING OF THE DESIGNED SOLUTIONS 

The research presented in this deliverable directly contributes to achieving objective 5 of the project, which is as 

follows: 

Objective 5. Develop cost-effective centralized, distributed or hybrid radio resource management techniques 
(considering both legitimate and malicious interferers) in hyper-dense dynamic subnetwork deployments. 
 

In the project, 16 technology components (TCs) relevant to in-X subnetworks have been identified. The list of TCs 

is as follows: 

TC1. In-X data traffic models  
TC2. Channel models for in-X scenarios   
TC3. Sub-THz system model   
TC4. Ultra-short transmissions with extreme reliability  
TC5. Analog/hybrid beamforming/beamfocusing  
TC6. Jamming-aware native PHY design   
TC7. RIS enhancements   
TC8. Intra-subnetwork macro-diversity  
TC9. Flexible/full duplex scheduler   
TC10. Predictive scheduler   
TC11. Latency-aware access in the unlicensed spectrum  
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TC12. Centralized radio resource management  
TC13. Distributed/hybrid radio resource management.  
TC14. Jamming detection and mitigation   
TC15. Hybrid management of traffic, spectrum and computational resources  
TC16. Coordination of operations among subnetworks in the same entity  
 

The work presented in D4.1 covers TC12-TC14. In Table 1, we present a list of the technology/methods studied in 

this deliverable and their connection with the original TCs.  

 

TABLE 1: CONNECTION OF THE STUDIED METHODS WITH THE 6G-SHINE TCS. 

Technology/method   6G-SHINE TCs   

Centralized sub-band allocation solutions using heuristic approaches TC12 

Centralized sub-band allocation solutions using AI/ML approaches TC12 

Distributed sub-band allocation approach TC13 

Hybrid sub-band allocation approaches TC13 

Distributed power control for interference management in in-X subnetworks TC13 

Goal-oriented RRM approaches TC14 

Subnetwork resource pool reservations TC13 

IBE mitigation for subnetwork resources TC13 

Demapper Design for LLR-based decoders to mitigate non-cellular interference. TC14 

Anomaly detection methods for jamming detection and mitigation. TC14 

 

Table 2 describes the main KPIs and KVIs targeted by the presented methods. It is worth mentioning that, since 

6G-SHINE is a low technology readiness level (TRL) project, we do not aim at directly measuring the impact of the 

designed solutions in terms of KVIs, as such assessment will only be possible once the designed solutions are 

implemented and integrated into a coherent system design, which is beyond the scope of the project. Still, KVIs 

are at the centre of our technology design, and we speculate how our solutions can be the basic “bricks” for 

addressing relevant KVIs. A thorough description of how 6G-SHINE research addresses environmental, economic 

and social sustainability is included in deliverable D2.2 [2]. Given the nature of the research in RRM, the methods 

presented in D4.1 mainly address environmental and economic sustainability for future in-X subnetwork, though 

some of the methods can also have beneficial effects on social sustainability.   

   

 

TABLE 2: KPIS AND KVIS TARGETED BY THE PRESENTED METHODS. 

Technology/method   Main target KPIs   Targeted KVIs   

Centralized sub-band allocation 
solutions using heuristic 
approaches 

Support different minimum spectral    
efficiency requirements. 
 
Communication service availability 
with a minimum target value of 
99.999%.  

Improved economic sustainability 
thanks to more efficient usage of 
radio resources for industrial 
communication. Improving quality 
of experience of consumer use cases 
thanks to the higher throughput 
enabled by intelligent resource 
allocation. 
 

Centralized sub-band allocation 
solutions using AI/ML 
approaches 
Distributed sub-band allocation 
approach 
Hybrid sub-band allocation 
approaches 
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Distributed Power Control for 
interference management in in-X 
subnetworks 

 

Goal-oriented RRM approaches Path Tracking Error, Linear–Quadratic 
Regulator (LQR), Throughput and 
Latency 

Economic and social sustainability: 

by designing a communication 

system that specifically targets the 

application goals, we can prevent 

the overprovisioning of network 

resources. This not only improves 

the overall industrial operation but 

also enhances aspects such as 

safety and energy efficiency. 

Subnetwork resource pool 

reservations 

Low energy consumption and low 
error probability. 

Improved environmental 

sustainability due to lower energy 

consumption of the nodes enabled 

by new subnetwork resource 

reservation signal which allows SNEs 

reducing resource pool monitoring 

effort. 

IBE mitigation for subnetwork 
resources 

High data rate and low error 
probability 

Managing IBE issues allows more 

efficient and reliable 

communication. This can result in 

improved economic sustainability 

and improved environmental 

sustainability achieved with 

replacing wired connections by 

reliable wireless subnetworks.  

Demapper Design for LLR-based 

decoders to mitigate non-cellular 

interference. 

Bit error rate and/or Packet error rate. 

Throughput 

Latency. 

Link Quality Indicator. 

 

Improved economic sustainability, 

since stronger resilience to external 

interference can translate to larger 

production outcome. Social 

sustainability, since resilience to 

external interference can translate to 

improved safety. 

Anomaly detection methods for 

jamming detection and 

mitigation. 

Detection probability 

False positive rate and/or True positive 

rate. 

 

  
 

Table 3 presents the mapping of the presented methods to the use case categories (and specific use cases) as 

defined in deliverable D2.2. We remark that, we do not aim at evaluating each presented method for all the 

mapped use cases. In our performance evaluation, we rather highlight the main use case or use case category of 

interest, as we believe the extension to a different use case with similar KPIs is reasonably straightforward.  
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TABLE 3: MAPPING BETWEEN PRESENTED METHODS AND USE CASES AS DEFINED IN D2.2 

Technology/method   Main use case 
category(ies)   

Relevant use cases   

Centralized sub-band allocation solutions using 
heuristic approaches 

Industrial, 
Consumer 
 

Robot control, Unit test cell, Visual 
inspection cell, Coexistence in factory 
hall, Immersive education 
 

Centralized sub-band allocation solutions using 
AI/ML approaches 
Distributed sub-band allocation approach 

Hybrid sub-band allocation approaches 

Distributed Power control for interference 
management in in-X subnetworks 

Industrial Robot control, Coexistence in factory 
Hall 

Goal-oriented RRM approaches 
Industrial Robot control, Coexistence in factory 

Hall 
 

 
Detection and mitigation of external 
interference 

Industrial 
In-vehicle  

Robot control, Wireless zone ECU, 
Collaborative zone ECU 
V-3: In-Vehicle subnetwork category 

Subnetwork resource pool reservations Industrial 
Consumer 

 

Robot control, Unit test cell;  
Immersive education, interactive 
gaming 

IBE mitigation for subnetwork resources Industrial 
Consumer 

 

Robot control, Unit test cell; 
Immersive education, interactive 
gaming 

 
Demapper Design for LLR-based decoders to 

mitigate non-cellular interference. 
Industrial 
In-vehicle  

Robot control, Wireless zone ECU, 
Collaborative zone ECU 

 

Anomaly detection methods for jamming 

detection and mitigation. 
Industrial 
In-vehicle  

Robot control, Wireless zone ECU, 
Collaborative zone ECU 
 

  
 
An outlook of the standardization potential of the proposed methods is presented in Table 4.   
 

 

TABLE 4: STANDARDIZATION POTENTIAL OF THE PRESENTED METHODS  

Technology/method   Standardization potential   

Centralized/distributed/hybrid 
sub-band allocation 

These concepts may require specific signaling enhancements, for e.g. 
measurements report, sub-band allocation indication, to be potentially 
standardized in 3GPP RAN1 

Subnetwork resource pool 

reservations 

This concept has potential relevance in 3GPP RAN1 and RAN2 standardization, for 

example, in sidelink specifications with enhancements for subnetwork 

communications. 

IBE mitigation for subnetwork 

resources 

These related concepts have potential relevance for 3GPP RAN1 and RAN2 

standardization, for example, in sidelink specifications with enhancements for 

subnetwork communications. 

Distributed Power Control for 

interference management in in-X 

subnetworks 

These concepts may find possible standardization in 3GPP RAN1, for 

example, in specifications related to downlink power control for 

interference management as well as synchronization across subnetworks. 

Goal-oriented RRM approaches 

 

The related concept may necessitate specific signaling enhancements, 

which could potentially be addressed by 3GPP RAN2. Additionally, the 
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design aspects of joint network-control can be linked to 3GPP RAN3 

standardization. 
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2 RRM FOR IN-X SUBNETWORKS  

This chapter explores RRM in the context of densely deployed In-X subnetworks, which may be either standalone 

or integrated within a broader 6G network like, e.g. an enterprise network. In response to the increasing need for 

sophisticated RRM strategies in highly dense and mobile subnetworks, this chapter presents a comprehensive 

overview of centralized, distributed, and hybrid RRM approaches. 

Sub-band allocation and power control are fundamental to Radio Resource Management (RRM), as they determine 

how efficiently a network uses its frequency spectrum and maintains signal quality while minimising interference 

and power consumption. These domains are essential for the robust performance and sustainability of high-

density networks in the evolving landscape of 6G connectivity. When examining inter-subnetwork communication, 

two distinct paradigms emerge: one where no explicit inter-subnetwork signaling occurs (potentially relying solely 

on pilot signals for CSI acquisition) and another where subnetworks engage in explicit message exchanges to fine-

tune their operational parameters. In this section, initially, the discussion is focused on sub-band allocation under 

the assumption of non-communicative subnetworks, later shifting focus to power control scenarios where 

subnetworks engage in explicit communications with each other. 

Centralized strategies are pivotal when subnetworks are seamlessly integrated within a larger network, utilizing a 

centralized RRM entity at the 6G BS. This approach facilitates comprehensive management of radio resources 

across all subnetworks, optimizing the allocation process based on complete or near-complete CSI obtained from 

HCs or LCs. On the other hand, distributed RRM becomes necessary in scenarios where subnetworks operate with 

intermittent connectivity or need to function autonomously. These solutions empower subnetworks to manage 

their radio resources independently, dynamically adapting to local conditions without the need for centralized 

control. This part of the chapter explores algorithms like Greedy selection, which prioritize minimal signaling 

overhead and adaptability to local interference conditions. Hybrid approaches merge the benefits of centralized 

and distributed methodologies, offering a flexible strategy that adapts to varying connectivity and CSI availability. 

These approaches are particularly useful in environments with heterogeneous network capabilities and access 

levels to the central controller. 

Throughout the chapter, a variety of sub-band allocation strategies is examined, from heuristic methods like 

centralized graph colouring to advanced machine learning techniques that harness the power of deep neural 

networks for dynamic and efficient resource allocation. Special attention is given to the application of these 

strategies in practical scenarios, such as factory settings where different subnetworks may have diverse service 

requirements ranging from Ultra-Reliable and Low Latency Communications (URLLC) to enhanced Mobile 

Broadband (eMBB). We further contextualize these strategies by considering their application in a simulated 

factory environment and assessing the performance of various algorithms through comprehensive simulations.  

 

 

2.1 SUB-BAND ALLOCATION FOR IN-X SUBNETWORKS 

2.1.1 CENTRALIZED APPROACHES FOR SUB-BAND ALLOCATION 

When in-X subnetworks coexist within the coverage area of a larger 6G network, such as an enterprise network in 

a factory, centralized RRM becomes feasible. In this section we consider the general deployment as depicted in 

Figure 1 i.e., there is a centralized RRM entity at the 6G BS which is responsible to manage the radio resources of 

all the subnetworks. We assume here that the total bandwidth is divided into 𝐾 equally sized sub-bands, and the 

6G BS manages the sub-band to be allocated to each subnetwork. The solutions provided are general and are 

applicable to a wide range of use cases. For clearer understanding, specific use cases are referenced where 

appropriate. RRM solutions usually exploits channel state information (CSI) measurements, that could be 

performed at either HCs, LCs or SNEs. Let us assume that measurements are performed at the HCs. Each 

subnetwork is assigned orthogonal reference signals in each sub-band; before starting the data transmission stage, 

the subnetworks transmit their reference signal, assigned by the central RRM entity, using a fixed power. Then, 
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the HCs measure the reference signal received powers (RSRP) from neighbour HCs on each sub-band. In a 

centralized solution, the HCs reports the measured RSRPs to the Centralized Controller (CC). Such CC can be co-

located with the 6G BS. We denote the RSRP of the 𝑖-th LC from the 𝑛-th subnetwork on the 𝑘-th sub-band as ℎ𝑖,𝑛
𝑘 . 

The RSRP matrix of all subnetworks is denoted by 𝚮 ∈ ℛ𝐾×𝑁×𝑁. 

 

2.1.1.1 CENTRALIZED SUB-BAND ALLOCATION SOLUTIONS USING HEURISTIC APPROACHES 

Various heuristic methods have been proposed in the literature for sub-band allocation, which have demonstrated 

satisfactory performance.  

One well-known centralized approach is centralized graph colouring (CGC). In this algorithm, a graph is first 

defined by considering the sets of vertices 𝜈 and edges ℰ. The vertices represent the subnetworks and edges are 

added based on the available information. Then, using the completed graph 𝒢(𝜈, ℰ), a vertex-coloring algorithm is 

used to assign a color (equivalent to a sub-band) to each vertex. The vertex-colouring assigns colours in a way so 

that no neighbouring vertices have the same colour. One way of creating the edges is using the reference signal 

received powers (RSRP)s received from the subnetworks. For this purpose, the average interference-to-signal-ratio 

(ISR) of the 𝑛-th subnetwork from 𝑙-th subnetwork is calculated over the 𝐾 sub-bands: 

𝑊𝑛
̅̅ ̅̅ (𝑙) =

1

𝐾
∑

ℎ𝑛,𝑙
𝑘

ℎ𝑛,𝑛
𝑘

𝐾

𝑘=1

. 

After calculating the average ISRs, the 𝑛-th vertex will be connected to the 𝐾 − 1 subnetworks with the highest 

average ISRs. In addition, the averaging could be done locally on the HCs which will decrease the signaling overhead 

of the CGC algorithm. 

Furthermore, the greedy vertex-colouring algorithms try to assign the minimum number of colours to the vertices. 

To ensure that, the graph is colourable by the available number of colours (corresponding to the number of sub-

bands) it adds the edge (𝑖∗, 𝑗∗) to the graph as follows, 

(𝑖∗, 𝑗∗) = arg max
𝑖,𝑗∈ℕ

(𝑖,𝑗)∉ℰ

𝑊𝑖
̅̅ ̅(𝑗), 

if the number of assigned colours is less than 𝐾. Otherwise, it removes the edge, i.e. 

(𝑖∗, 𝑗∗) = arg min
𝑖,𝑗∈ℕ

(𝑖,𝑗)∉ℰ

𝑊𝑖
̅̅ ̅(𝑗). 

The process of adding or removing the edges is done sequentially until the number of assigned colours equals the 

number of sub-bands. 

An advanced frequency resource allocation scheme, known as Sequential Iterative Sub-band Allocation (SISA) 

[3], has been designed recently to minimize the sum of ISR across all subnetwork links. The ISR level is calculated 

based on the RSRP as follows: 

𝑊𝑛(𝑙, 𝑘) =
ℎ𝑛,𝑙

𝑘

ℎ𝑛,𝑛
𝑘

,  1 ≤ 𝑙 ≤ 𝑁. 

This measurement matrix of size 𝑁 ×  𝐾 is calculated at the HC and then forwarded to the CC. After receiving the 

ISRs from all subnetworks, the controller runs the sequential iterative sub-band allocation algorithm which is 

described in Algorithm 1. This algorithm starts first with a random allocation that is denoted by the mapping 

function 𝒞0(𝑛), ∀𝑛 ∈ 𝒜 . Moreover, ℬ𝑘
0 = 𝑛|𝑛 ∈ 𝒜, 𝒞0(𝑛) = 𝑘  denotes the set of active users with the initial 

allocated sub-band of 𝑘. After initialization, the algorithm goes through the active subnetworks sequentially and 

chooses the sub-band with the lowest mutual ISR according to the current allocation which is described in line 5 

of the algorithm. After selecting the sub-band, the allocation is updated at line 6 before moving to the next 

subnetwork. This process is carried out for 𝑀 iterations; the allocation vector at the end of the last iteration 

corresponds to the final allocation. Note that, in the case of mobile subnetworks (or subnetworks experiencing 
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Algorithm 1: Sequential Iterative Sub-band Allocation (SISA) 

time-varying channels), the algorithm has to be run frequently enough to cope with the channel variations. Aspects 

related to mobile subnetworks will be discussed in deliverable D4.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1.1.2 CENTRALIZED SUB-BAND ALLOCATION SOLUTIONS USING AI/ML APPROACHES 

While traditional optimization methods and heuristics have proven to be effective in certain scenarios [4], the 

dynamic and complex nature of in-X subnetworks demands a more adaptive and data-driven approach, 

necessitating the adoption of advanced artificial intelligence (AI) solutions. 

RRM approaches encounter a challenge in their reliance on complete CSI for all desired and interfering links. 

Acquiring such information in dense deployments can be challenging and time-intensive. A potential solution for 

centralized power control in subnetworks involves utilizing readily available information instead of full CSI. The 

power control method proposed in [5] exemplifies this by relying solely on subnetwork positioning information 

(commonly available at the central controller) and knowledge of the desired link channel gain during the execution 

phase. However, full CSI is essential during the training phase to compute network performance accurately.  

The effectiveness of treating signal processing problems as an unknown nonlinear mapping from input to output 

and employing deep neural networks to approximate it has been demonstrated in [6]. This approach was applied 

to approximate interference management algorithms, showcasing its successful application in the realm of signal 

processing. 

In [7], a low complexity centralized transmit power control algorithm is proposed, which is based on the deep 

unfolding of an iterative projected gradient descent algorithm into layers of a deep neural network. This approach 

involves learning the step-size parameters. Additionally, an unsupervised learning method is applied for the 

weights of the Deep Neural Network (DNN), which can be pre-trained online or offline. 

The application of graph neural networks has garnered significant attention in addressing the challenges of large-

scale interference management. Particularly, this machine learning (ML) paradigm has found utility in power 

control for In-factory subnetworks (InF-S). 

Extending the ML approach to address the sub-band allocation problem, authors in [8] model subnetwork 

deployment as a conflict graph. An unsupervised learning approach inspired by graph colouring heuristics and the 

Potts model [9], is proposed to optimize sub-band allocation using graph neural networks. 

In-X subnetworks in general and InF-S specially are required to support different services, including URLLC and 

eMBB, each with distinct requirements. In designing RRM solutions it is necessary to consider these different 

requirements and try to efficiently utilize the resources to meet the required data rates of various subnetworks. 

Input: 𝑊𝑛(𝑙,  𝑘),  𝑛,  𝑙 = 1,   … ,  𝑁,  𝑘 = 1,   … ,  𝐾 

1)Initialize: 𝒞0(𝑛), ∀𝑛 ∈ 𝒜, ℬ𝑘
0 = { 𝑛 ∣∣ 𝑛 ∈ 𝒜, 𝒞0(𝑛) = 𝑘 } 

2)for 𝑚 = 1,2,   … ,  𝑀 do 

3)     for 𝑛 = 1,2, … , |𝐴| do 
4)           𝑡 = |𝐴|(𝑚 − 1) + 𝑛 
5)           𝒞𝑡(𝑛) = arg min

1≤𝑘≤𝐾

 ∑ 𝑊𝑛(𝑙, 𝑘) + 𝑊𝑙(𝑛, 𝑘)𝑙∈ℬ𝑘
𝑡−1

𝑙≠𝑛

 

6)          ℬ𝑘
𝑡 = { 𝑛 ∣∣ 𝑛 ∈ 𝒜, 𝒞𝑡(𝑛) = 𝑘 } 

7)     end for 

8)end for 

 

Output: ℬ𝑘
𝑑 , 𝑤ℎ𝑒𝑟𝑒 𝑑 = |𝐴| × 𝑀 
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For better inception let us consider an industrial use case and consider a manufacturing facility comprised of an 

entity equipped with RRM functionality. This entity harnesses its capabilities to effectively govern radio resources, 

serving the role of a CC. The factory incorporates numerous short-range cells deployed across robotic systems, 

production modules, conveyors, and other industrial machinery. Each of these cells, referred to as InF-S, 

encompasses a central communication node, which functions as the edge processing resource for one or multiple 

LCs/SNEs within the respective subnetwork. Figure 2 shows a simplified representation of a 2D layout of an InF-S 

deployment which contains different groups of subnetworks with different required rate or equivalently spectral 

efficiency (SE). Focus is here on the uplink. The representation shows a single uplink between a LC/SNE and an HC 

in each subnetwork, and a signaling link from each subnetwork’s HC to a CC. We assume all the LCs/SNEs within a 

subnetwork are allocated orthogonal resources, i.e. there is no intra-cell interference. Therefore, inter-cell 

interference is the main limitation to the subnetwork’s SE. For simplicity, for the rest of this section, we assume 

that each subnetwork serves a single LC/SNE whose transmissions occupy the available bandwidth. 

 

 

FIGURE 2: IN-FACTORY SUBNETWORKS WITH DIFFERENT RATE REQUIREMENTS 

 

For now, the focus is on the uplink transmission of 𝑁 subnetworks which are indexed by  𝑛 ∈ {1, ⋯ , 𝑁} . In the 

considered system, there are 𝐾 sub-bands, where  𝑘 ∈ {1, ⋯ , 𝐾} denotes the set of sub-bands which LC/SNE use 

to transmit data to the HC. It is assumed that each subnetwork has the capability to operate exclusively over a 
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single sub-band. While eMBB prioritizes high data rates, URLLC services demand low latency and high reliability. 

The objective of resource allocation is to maximize the number of subnetworks which can achieve to their required 

rate while ensuring the reliability of critical services. To achieve this goal, the selection of the sub-band, 

represented by 𝑎𝑛, must be optimized based on current channel conditions. Instead of trying to find the solution 

of the optimization problem directly through numerical approaches, we transform it into a functional optimization 

problem. The aim is to find a function that maps the environment (i.e., channel gains) to optimal solutions (i.e., 

sub-band allocation). To address this functional optimization problem, unsupervised learning techniques are 

employed. 

Leveraging the universal approximation theorem [6], DNNs can approximate a wide range of functions. Therefore, 

they can be utilized to represent functions that approximate the optimal sub-band allocation strategy for various 

radio channel conditions. 

The achievable SE (bits/s/Hz) at subnetwork 𝑛 in the 𝑘-th sub-band is approximated using the Shannon capacity 

equation as shown below: 

SE𝑛
𝑘 = log2 (1 +

ℎ𝑛,𝑛𝑓𝑛
𝑘(𝐻)Pm

γ𝑚,𝑛
2 + ∑ ℎ𝑚,𝑛𝑓𝑚

𝑘(𝐻)Pm𝑚∈𝑁\{𝑛}
), 

where ℎ𝑚, 𝑛 represents the channel state of the link from the interfering LC/SNE in subnetwork 𝑚, and 𝑓𝑛
𝑘(. ) 

denotes the approximation function for optimal sub-band selection, such that 𝑎𝑛
𝑘 = 𝑓𝑛

𝑘(𝐻). The transmit power, 

denoted as Pm, is uniform across all subnetworks. The term γ𝑚,𝑛
2  is the receiver noise power calculated as γ𝑚,𝑛

2 =

10(−174+𝑁𝐹+10𝑙𝑜𝑔10(𝑊𝑘)) where 𝑊𝑘 denotes the bandwidth of each sub-band and 𝑁𝐹 is the receiver noise figure.  

The proposed sub-band allocation scheme aims to find the optimal 𝑓𝑛
𝑘(. ) to maximize the expected number of 

subnetworks conforming to the required SE or, equivalently minimize the number of subnetworks that can not 

reach their target SE or rate. Let SE𝑛
req represent the required SE. The optimal sub-band allocation strategy can be 

found by solving the following optimization problem:  

min
𝑓𝑛

𝑘∈{0,1}
∑ 𝕀

𝑁

𝑛=1

(𝑆𝐸𝑛(𝑓𝑛
𝑘(𝑯))) 

𝑠. 𝑡.  ∑ 𝑓𝑛
𝑘(𝐻)

𝐾

𝑘=1

= 1, ∀𝑛 ∈ ℕ 

where 𝕀(𝑆𝐸𝑛) is a binary indicator function with a value of 1 if SE𝑛 ≤ SE𝑛
req

 and 0, otherwise.  

The optimization problem involves maximizing the number of rate conforming subnetworks (RCS) subject to a 

constraint that ensures only one sub-band is used by each subnetwork. 

Figure 3 illustrates the configuration of the proposed DNN, which is based on the fully connected neural network 

(FNN). The DNN takes the channel gain matrix 𝐻 as input, estimates the function fn
k, and generates the sub-band 

allocation vector 𝑎𝑛 as the output. In the preprocessing stage, the channel gains undergo reshaping into a one-

dimensional vector, a crucial step for integration within the FNN. Subsequently, the values are transformed to the 

dB scale to restrict the range of possible channel gains. Following this, normalization ensures a zero mean and unit 

variance. The model then processes the normalized channel gain through the FNN. 
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FIGURE 3: STRUCTURE OF THE PROPOSED DNN MODEL 

 

The FNN structure consists of 𝑀𝐿 layers, each including a fully connected unit, batch normalization, and a rectified 

linear unit (ReLU). After the last ReLU, dropout is applied for regularization. The number of hidden nodes for a fully 

connected unit is set to 𝑀𝐻, with ReLU acting as the activation function. Batch normalization and dropout are 

employed to mitigate overfitting of the DNN. 

The output of the final layer connects to the last fully connected unit, resulting in 𝑁𝐾 outputs. These outputs are 

then reshaped into 𝑁 × 𝐾 and fed into 𝑁 softmax modules. Each softmax module corresponds to the sub-band 

assignment for a specific subnetwork, executing the softmax operation. This yields 𝐾  outputs indicating the 

probability that a sub-band is utilized by the respective subnetwork. The constraint on the sub-band allocation 

problem is consistently satisfied, as the Softmax outputs sum to one. 

As illustrated in Figure 3, the sub-band allocation process differs between training and inference. Specifically, 

during training, the output of the Softmax module, 𝑎𝑛
𝑘, directly represents the selected sub-band. However, during 

inference, 𝑎𝑛
𝑘 is set to 1 for 𝑘∗ = arg max

𝑘
𝑎𝑛

𝑘 , and 𝑎𝑛
𝑘 is set to 0 for all other 𝑘 to adhere to the binary constraint 

in the implementation. This binarization introduces a difference between the resource allocation strategy used in 

training and that employed during inference, leading to performance degradation. To address the binary 

constraint, as outlined in the optimization problem, a soft binarization technique is implemented. This technique 

progressively guides continuous output values towards binary representations during the training steps. 

Parameterized Softmax modules are leveraged for this purpose, where the 𝑛-th softmax layer bloc’'s 𝑘-th output 

ϕδ(𝑧𝑛
𝑘) is defined as: 

ϕδ(𝑧𝑛
𝑘) =

𝑒𝑧𝑛
𝑘/δ

∑ 𝑒𝑧𝑛
𝑘/δ𝐾

𝑘=1

. 

Here, 𝑧𝑛
𝑘  represents the input to the 𝑛 -th softmax layer block, and δ ∈ (0,1]  is a parameter controlling the 

sharpness of the probability distribution generated by the Softmax. A higher δ value results in a softer, more 

uniform distribution, while a lower δ  value leads to a sharper distribution. For a moderate regime of 𝛿 , the 

parameterized softmax function maintains a non-zero gradient, facilitating efficient training via the stochastic 

gradient descent algorithm. To mitigate the vanishing gradient problem associated with a small value of 𝛿, an 

adaptive scaling approach is employed. The scaling factor is decreased at predefined intervals by a reduction factor, 

ensuring effective training convergence without encountering the vanishing gradient issue. 

The decision to adopt unsupervised learning is driven by the significant time investment required to obtain labelled 

data for supervised training, especially when dealing with a substantial number of subnetworks. Unlike supervised 

learning, where input data 𝑯  is labelled by the output data (optimal sub-band allocation 𝒂𝒏 ), our approach 

leverages unsupervised learning. This allows our DNN to be effectively trained using a carefully designed loss 

function, eliminating the need for labelled data. 

Directly using the objective of optimization problem as the loss function can impact the efficiency of back-

propagation-based training. This is due to the non-differentiability of a step function, at specific points. To address 

this challenge, we employ a modified version of the objective function to ensure differentiability throughout the 

optimization process. By replacing the binary indicator function with the sigmoid function as a differentiable 

alternative, the loss function would be: 
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𝐿 =
σ(𝑆𝐸𝑛

𝑟𝑒𝑞
− 𝑆𝐸𝑛)

𝑆𝐸𝑛
𝑟𝑒𝑞 , 

where σ(⋅) denotes the sigmoid function defined as σ(z)  =  
1

1 + e−z. The denominator is used to weight different 

required sEs, reflecting practical scenarios where low-rate subnetworks (LRS), such as those involved in robot 

control applications, are usually critical and should be more reliable. In contrast, high-rate subnetworks (HRS), like 

those in visual inspection applications, despite high data rate requirement allow for acceptable degradation in 

instantaneous performance. Figure 4 shows the loss function for HRS and the binary indicator function. 

 

 

FIGURE 4: DIFFERENTIABLE ALTERNATIVE INDICATOR FUNCTION AND THE ORIGINAL INDICATOR FUNCTION . 

 

In the proposed DNN-aided sub-band allocation, the trained model approximates the sub-band allocation for any 

channel realization, enabling the scheme’'s adaptability to various channel conditions without the need for 

retraining. While the DNN training phase may entail extended computation time, it is conducted offline, i.e., prior 

to deploying the DNN in the CC. This offline training approach significantly reduces time complexity compared to 

iterative algorithms.  

We consider 𝑁 InF-S deployed in an 𝐿 × 𝐿(𝑚2) factory area.  At each InF-S, HC positioned at the center of a circular 

coverage area with radius 𝑅, and a LC/SNE located at a distance 𝑑 from the HC, ensuring a minimum proximity of 

𝑑𝑚𝑖𝑛. 

We categorize our subnetworks into two groups: LRS and HRS, which correspond to the robot control and visual 

inspection use cases, respectively. In Table 20 of deliverable D2.2 [2], the minimum packet size for the robot control 

use case is specified as 60 bytes, with communication cycles required to be below 100 µs. This translates to a 

spectral efficiency (SE) of 0.48 when considering a bandwidth of 10 MHz per sub-band. For the inspection cell use 

case, the packet size is approximately 100 bytes. Additionally, there is a need to multiplex low latency traffic with 

high data rate traffic from camera feeds, with approximately 50 Mbps per video camera and 5 Mbps per laser 

camera. This results in a total data rate of 63 Mbps. Considering a bandwidth of 10 MHz per sub-band, this yields 

an SE of 6.3. Therefore, we have selected 0.48 and 8 as the values for SELreq  and SEHreq  respectively, such that a 

certain margin is given for the high-rate subnetworks. 

The wireless communication channel model considered for the connection of the LCs/SNEs and HC is based on the 

model that the 3rd Generation Partnership Project (3GPP) released for InF scenarios. The channel gain in the link 

between the sensor at subnetwork 𝑚 and the HC in subnetwork 𝑛 is expressed as: 

ℎ𝑚,𝑛 = |𝑔𝑚,𝑛|
2

⋅ Γ𝑚,𝑛 ⋅ ψ𝑚,𝑛, 
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where 𝑔𝑚,𝑛, Γ𝑛,𝑚 and ψ𝑚,𝑛 are complex small-scale fading, path loss and correlated shadowing respectively. The 

small-scale fading, 𝑔, is assumed to be Rayleigh distributed and for the path loss model a dense clutter and low 

base station height InF (DL) scenario is considered. The specific details regarding the calculation of losses can be 

found in [10]. 

Subnetwork links are assumed to have correlated shadowing [11], meaning a source of shadowing will affect 

several links simultaneously. The first part of the Table 5 shows the simulation parameters for the system model. 

Note that 20 subnetworks in a 20×20 m area, correspond to a density of 50000 subnetworks/km2; such density is 

of a factor of ~x20 above typical dense small cells deployments in 5G (~2500 base stations/ km2 ). Regarding the 

DNN structure, we set the hyperparameters according to the second part of the Table 5. 

 

TABLE 5: SIMULATION PARAMETERS 

Parameter Value 

Deployment and System Parameters 

Factory area, 𝐿 × 𝐿 20 m×20 m 
Number of subnetworks, 𝑁 20 
Number of sub-bands, 𝐾 4 
Subnetwork radius, 𝑅 1 m 
Number of LC/SNE per subnetwork, 𝐽 1 
Minimum distance between HCs 2 m 
LC/SNE to HC minimum distance, 𝑑𝑚𝑖𝑛 0.8 
Shadowing standard deviation, λ 7.2 dB 
DL clutter density, 𝑟, clutter size, 𝑑𝑠 0.6, 2 
De-correlation distance, 𝑑𝑐 5 m 
Transmit power, Pm 0 dBm 
Bandwidth, 𝐵 40 MHz 
Carrier frequency, 𝑓𝑐 10 GHz 
Noise figure, NF 5 dB 

LRS required SE, SEL
req

 0.4 

HRS required SE, SEH
req

 8 

DNN Parameters 

Number of hidden nodes, 𝑀𝐻 1000 
Number of hidden layers, 𝑀𝐿 4 
Learning rate, α 1𝑒−5 
Dropout rate 0.1 
Batch size, 𝑀𝐵 1024 
Training epochs 200 
Training samples 1𝑒5 
Validation samples 1𝑒4 

 

The proposed scheme is compared with three baseline schemes: CGC, SISA and Random Allocation (RA). To 

validate the efficacy of the loss function in handling the binary constraint, the evolution of the loss functions and 

the binarization error is assessed. The binarization error is defined as 𝔼|𝑎𝑛 − round(𝑎𝑛)|. Figure 5 illustrates the 

values of the loss functions for both training and validation data, along with the binarization error and Figure 6 

shows the CDF of the binarization error. Considering that optimization variables 𝑎𝑛 fall within the range of 0 to 1, 

the maximum value of the binarization error is 0.5. Post-convergence, the binarization error becomes exceedingly 

small, confirming that the DNN model proficiently generates binary values. 
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FIGURE 5: TRAINING METRICS OF DNN FIGURE 6: CDF OF THE BINARIZATION ERROR 
 

 

 

FIGURE 7 PRESENTS THE EMPIRICAL CUMULATIVE DISTRIBUTION CURVE (ECDF) OF THE NUMBER OF RCS FOR TWO DISTINCT 

SUBNETWORK GROUPS. IN FIGURE 7 (A), IT IS EVIDENT THAT RA AND CGC CANNOT GUARANTEE THE REQUIRED RATES FOR 

ALL LRS. FOR APPROXIMATELY 10 PERCENT OF THE SUBNETWORKS, THESE METHODS FAIL TO REACH THE SPECIFIED RATE. IN 

CONTRAST, BOTH SISA AND DNN PERFORM EXCEPTIONALLY WELL FOR LRS. THE MAJORITY OF THE TIME, EMPLOYING EITHER 

OF THESE ALGORITHMS ENABLES LRS TO MEET THEIR REQUIRED RATES. 

Figure 7 (B) illustrates RCS for HRS, showcasing the superiority of the proposed DNN-based sub-band allocation 

over other benchmarks. On average, three subnetworks of the HRS group can achieve the required rates, while 

this number is two for SISA. It is important to emphasise that the data traffic of subnetworks may vary at each time 

interval, necessitating effective data transmission management through a scheduler within the InF-S. In high-load 

scenarios, where resources are limited, and not all subnetworks can attain their target rates, those falling short of 

the target may need to adjust their functionality to a lower rate. This adaptation is particularly relevant in use-

cases such as vision inspection, where sensors can still operate effectively with lower resolution. Despite the 

evident advantages of our proposed scheme, it is essential to acknowledge that, in the current landscape of hyper-

dense deployment and constrained resources like bandwidth, relying solely on sub-band allocation may not 

guarantee meeting the expected rate requirements for all subnetworks simultaneously. Therefore, it becomes 

crucial to consider implementing power control mechanisms or exploring alternative approaches to further 

enhance the number of subnetworks meeting their rate requirements. 

 

  

(A): LOW RATE SUBNETWORKS (B): HIGH RATE SUBNETWORKS 
 

FIGURE 7: RATE-CONFORMING INF-SS 
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The trained DNN network consists of simple linear and nonlinear transform units in the forward path, enabling the 

potential for parallel computation. This design choice facilitates efficient execution and results in low computation 

time. In contrast, benchmarks like CGC and SISA rely on iterative algorithms, introducing challenges in parallel 

implementation and limiting their computational efficiency. 

The performance evaluations were conducted in a cloud computing environment using resources equipped with 

an AMD EPYC-Rome Processor (40 cores, 40 threads at 2.9 GHz) and an NVIDIA A40 GPU, with 64GB of RAM. The 

computational runtime for different algorithms is shown in Figure 8. The significantly lower time required by DNN 

compared to the benchmarks highlights the efficiency of the DNN-based approach in the context of sub-band 

allocation, particularly in scenarios involving large-scale computations. For more detailed information on the 

proposed scheme discussed in this section, readers can refer to [12]. 

 

 

FIGURE 8: COMPUTATIONAL RUNTIME FOR DIFFERENT ALGORITHMS  

 

 

2.1.2 DISTRIBUTED SUB-BAND ALLOCATION APPROACH 

In-X Subnetworks face a dual challenge, which involves autonomous radio resource management to mitigate 

interference while also being an integral part of a larger network that provides a broader resource optimization 

perspective. These subnetworks must maintain the capability to function autonomously, especially in scenarios 

where connectivity with the larger network is intermittent or unavailable, such as those involving critical services 

for e.g., in-vehicle subnetworks. 

In order to be able to operate autonomously, HCs need to possess the capability to sense available spectrum 

resources and dynamically select the optimal resource accordingly. The goal is to establish implicit distributed 

coordination schemes, where each subnetwork independently determines its optimal radio resources without 

relying on explicit communication links between subnetworks. 

One of the distributed and simplest algorithms to assign sub-bands to subnetworks is Greedy selection where after 

measuring the aggregated ISR, subnetworks independently select a sub-band as follows: 

 

𝑘∗ = arg min
𝑘=1,…,𝐾

∑
ℎ𝑛,𝑙

𝑘

ℎ𝑛,𝑛
𝑘

𝑙∈𝒜

. 

 
A comprehensive comparison of SoA solutions in sub-band allocation was conducted through a series of 

experiments in a simulated factory scenario, identical to the conditions outlined in the initial portion of Table 5. 

Through these experiments, we evaluated the performance of various algorithms, including SISA, Centralized graph 

colouring, and Random and Greedy, aiming to elucidate their efficacy in real-world deployment scenarios. 
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Figure 9 serves as a visual representation of our findings, highlighting the performance characteristics of these 

algorithms. In Figure 9 (A), we present the CDF of the individual SE for all subnetworks, providing an understanding 

of the data distribution across different percentile ranges. Meanwhile, Figure 9 (B) illustrates the average SE across 

all subnetworks, shedding light on the overall performance trends observed. 

Our analysis reveals intriguing patterns in algorithm performance. While both SISA and Greedy algorithms exhibit 

comparable average SE values across all subnetworks, their performance diverges when examined across different 

percentiles. Specifically, SISA demonstrates a commendable performance for low percentiles, showcasing its ability 

to maintain fairness in resource allocation among subnetworks. In contrast, the Greedy algorithm excels in high 

percentile scenarios, indicating its proficiency in optimizing SE under favourable conditions. 

These observations have significant implications for practical deployment scenarios, particularly in the context of 

URLLC use cases. Given its capability for fair resource management, SISA emerges as a preferred choice for 

applications requiring stringent reliability and latency requirements. However, the Greedy algorithm’'s prowess in 

maximizing SE makes it a compelling option in scenarios where high data rates is required. 

 
 

  
(A): INDIVIDUAL SE FOR ALL THE SUBNETWORKS (B): AVERAGE SE OVER ALL THE SUBNETWORKS 

 
 

FIGURE 9: PERFORMANCE EVALUATION OF THE DIFFERENT SOTA ALGORITHMS 

 
It is important to highlight the significant advantage of the Greedy algorithm in reducing signaling overhead. This 

reduction is primarily attributed to the elimination of reference signal transmission, a critical aspect in centralized 

methods. By removing this step, the Greedy algorithm simplifies the communication process, enhancing efficiency 

and reducing unnecessary resource consumption. In practical terms, this means that subnetworks employing the 

Greedy algorithm rely on the local sensed aggregate interference level during the data transmission stage, rather 

than engaging in additional signaling processes. This streamlined approach not only minimizes overhead but also 

enhances the scalability and adaptability of the system, particularly in dynamic and complex environments. 

Therefore, the Greedy algorithm emerges as a promising solution, offering both performance improvements and 

operational efficiency in sub-band allocation scenarios. Its ability to mitigate signaling overhead while maintaining 

effective interference management underscores its relevance in modern communication systems. 

 

2.1.3 HYBRID SUB-BAND ALLOCATION APPROACHES 

In certain network scenarios, the availability of CSI and access to a central controller  may vary among subnetworks. 

While some subnetworks possess the capability to measure CSI and communicate with the controller, others 

operate in disconnected or semi-connected environments, where capability to communicate with the central 

controller is limited or absent. In such heterogeneous environments, effective resource management becomes a 



Project: 101095738 – 6G-SHINE-HORIZON-JU-SNS-2022 

 

 

Page 26 of 60 

 

challenging task, necessitating the exploration of diverse strategies to ensure optimal performance across the 

network. 

One prevalent strategy involves the utilization of partial or outdated CSI by disconnected subnetworks, which may 

lack direct access to the CC. In this scenario, subnetworks rely on the last policy received from the controller 

regarding sub-band allocation and power levels. Although this approach may lack optimality due to outdated 

information or limited context, it offers simplicity and enables decentralized resource management. The CC can 

leverage this information during resource allocation procedures for connected subnetworks, ensuring a 

coordinated approach to resource utilization. Alternatively, a hybrid approach combining centralized and 

distributed methods can be employed to address the challenges posed by disconnected subnetworks. In this 

approach, connected subnetworks may utilize sophisticated algorithms such as SISA or ML techniques for sub-

band allocation, leveraging real-time CSI and controller guidance. Meanwhile, disconnected subnetworks may 

adopt a Greedy selection strategy based on local observations and historical data. Although disconnected 

subnetworks may achieve more efficient resource allocation through this hybrid approach, the centralized 

controller may lack real-time information for RRM in these subnetworks. Consequently, coordination and 

synchronization mechanisms are crucial to ensure coherence and compatibility between centralized and 

distributed resource management strategies. 

In summary, the management of heterogeneous networks with varying levels of access to CSI and centralized 

control necessitates the exploration of diverse resource management strategies. By leveraging a combination of 

centralized and distributed approaches, operators can optimize resource utilization while accommodating the 

constraints and limitations of disconnected subnetworks. Effective coordination and synchronization mechanisms 

are vital to ensure seamless operation and performance optimization across the entire network landscape.  

In Figure 10, we present a comparative performance analysis of various hybrid sub-band allocation strategies for 

imperfect CSI against both centralized and distributed algorithms with perfect CSI. The simulation parameters are 

the same as Table 5 and we suppose 4 of the 20  subnetworks are unable to report their measurements to the CC. 

The SISA-Greedy approach allows subnetworks connected to the CC to report their measurements and obtain a 

sub-band assignment based on the SISA algorithm. Meanwhile, subnetworks  that are unable to communicate with 

the CC autonomously choose their sub-band via a Greedy algorithm. Here, the CC lacks any data regarding the non-

communicative subnetworks. With the SISA-NN (nearest neighbour) imputation method, while some SNs may not 

be capable of reporting their measurements, they are still able to receive sub-band assignments. It is assumed that 

the CC is aware of the locations of all subnetworks, both connected and disconnected ones. For subnetworks that 

cannot provide data, the CC utilizes the CSI information of the connected nearest neighbour subnetwork to 

interpolate missing CSI matrix data. In the SISA-Random method, the CC does not recognize the presence of 

disconnected subnetworks, which independently select their operating sub-band at random. The figure clearly 

demonstrates that a combination of SISA and Greedy outperforms other hybrid methodologies for incomplete CSI 

scenarios. Such combination is indeed able to achieve similar performance as centralized SISA in term of individual 

and average SE, while requiring the least amount of side information from the subnetworks at CC. it is worth to 

mention however, that there is still a significant gap with SISA at very low percentiles of the individual SE results. 

Further studies are needed to further enhance the performance for the hybrid framework. 
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(A): INDIVIDUAL SE FOR ALL THE SUBNETWORKS (B): AVERAGE OF THE SE OVER ALL THE SUBNETWORK 

 
FIGURE 10: PERFORMANCE EVALUATION OF THE DIFFERENT ALGORITHMS  

 

2.1.4 NEXT STEPS 

Research presented in Section 2.1 has mainly been on addressing static scenarios, without delving into the 

complexities of dynamic subnetworks. Moving ahead, the unique challenges and potentials posed by mobile 

subnetworks are to be tackled. While this deliverable has emphasized the optimization of individual domains, 

future endeavours will concentrate on the joint optimization of sub-band and power control, potentially yielding 

more efficient RRM strategies. 

In deliverable D4.3, we aim to develop integrated solutions tailored to dynamic subnetworks. The hybrid methods 

discussed herein are still in their early stages and require extensive research and development to enhance their 

efficacy. Subsequent work will delve into exploring hybrid solutions that integrate centralized and distributed 

approaches. These solutions will address diverse types of subnetworks, including those seamlessly integrated 

within the parent network and those operating autonomously, within a unified framework. 

Additionally, results will be benchmarked against the requirements defined in WP2, and the performance targets 

presented in the proposal.. 

 
 

2.2 DISTRIBUTED POWER CONTROL FOR IN-X SUBNETWORKS  

In-X subnetworks are envisioned to be installed in environments where spectrum resources are limited and as a 

result are designed to operate within the same frequency bands. Previous section has addressed the problem by 

dividing the available spectrum in multiple sub-bands. Here, we study power control strategies as a solution to 

manage interference between different subnetworks. Differently from the approaches presented earlier, where 

signaling happens at most between subnetworks and a central controller, we consider here a distributed scheme 

where subnetworks are communicating directly with each other for the sake of optimizing transmission power. 

but subnetworks are still assumed not to be engaged in direct communication with other. 

Power control is a challenge widely studied in wireless networks, that fundamentally aims at balancing 

transmission power to minimize interference while ensuring reliable communication. The drive for more efficient 

and less computationally intensive power control solutions has led to significant innovations beyond traditional 

methods like Weighted Minimum Mean Square Error (WMMSE). Machine Learning, especially techniques involving 

deep learning and neural networks offers a promising alternative particularly in environments where network 

conditions are constantly changing, such as in in-X subnetworks. Deep Neural Networks (DNNs) have the limitation 

of not being able to take into consideration network topology, which can limit their effectiveness as the network 

evolves.  

To overcome these limitations recent advancements have focused on Graph Neural Networks (GNNs) which are 

more suited for data represented graphically like those found in wireless networks.  GNNs operate by exploiting 
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the relationships between nodes(vertices) (which could represent a HC node along with the served SNEs) and 

edges (representing connections such as interference between different subnetworks) to learn and predict optimal 

transmission power.  This ability of GNNs to utilize the graph structure of wireless networks allows for a more 

dynamic adaptation process which is more effective in responding to changes in network topology, for instance an 

addition of another subnetwork. Moreover, the use of Message Passing Neural Networks (MPNNs), a subclass of 

GNNs, further enhances this capability. While traditional GNNs focus on node-level feature updates, MPNNs 

introduce a dynamic message passing mechanism which allows nodes to exchange information directly with each 

other.  During this message passing phase of MPNNs, nodes(vertices) exchange messages containing data about 

their local state and the state of the network, which could include local power levels, channel state information 

and interference levels. This dynamic information exchange allows for a more responsive and adaptive power 

control strategy, making MPNNs particularly effective in managing the complex interactions between in-X 

subnetworks [13]. 

2.2.1 OPERATIONAL FRAMEWORK OF THE DISTRIBUTED MPNN POWER CONTROL SYSTEM 

An HC node should be able to control its downlink power towards the SNEs under a certain distributed power 

control framework with the goal of limiting interference to neighbour subnetworks. This power control framework 

could  rely on a MPNN between the different subnetworks.. Each HC node along with the served SNEs, of the 

existing subnetworks, could represent a vertex  in a GNN with edges being the  channel between  different 

subnetworks.  By integrating the MPNN framework, each GNN vertex  generates messages which exchanges with 

the rest of the vertices. These messages contain data about each vertex’s current state (vertex feature) as well as 

information about interference from the neighbour vertices (edge features).  The vertices features include the 

channel coefficients which reflect the direct communication channel used within the subnetwork and obtained 

through CSI estimation performed by each HC-SNE . Regarding edge features, these include the channel power 

gain from the interference channels, detailing how much interference a GNN vertex receives from its neighbours. 

Next, follows an aggregation phase where each GNN vertex aggregates the messages of all neighbours. After 

aggregating the incoming data each GNN vertex  updates its own state and finally makes decisions about its power 

settings. The above framework depends on accurate CSI for both interference links between vertices  

(subnetworks) as well as the internal links within subnetworks. To solve the challenges of increased signaling 

overhead that arise in MPNNs due to the need for CSI estimation and message passing, Air-MPNN has been 

proposed [14]. Air-MPNN alters the traditional message passing process by introducing an over-the-air aggregation 

mechanism which significantly reduces the number of transmissions required for each vertex to obtain global 

information about the network state. 

2.2.1.1 AIR-MPNN FRAMEWORK 

Contrary to MPNN where CSI and therefore pilot signals are needed for each link, interference or not, Air-MPNN 

is exploiting the fact that the received power of pilot signals from interference links depends on the channel state 

of the interference links. Therefore, by directly measuring the accumulated power of the received pilot signals, Air-

MPNN captures the aggregated interference without needing individual channel estimation. The Air-MPNN 

framework enables HC nodes to select the transmit power of the pilot sequence based on vertices features and 

embeddings during the message passing and aggregation phases. Following this, the HC nodes simultaneously 

broadcast their pilot signals. The considered Air-MPNN framework only requires all the HC nodes to broadcast the 

pilot simultaneously for N times, corresponding to N rounds of updates to the GNNs embedding, without additional 

feedback among the other nodes. After the N rounds of broadcasting pilot signals and processing via message 

passing and aggregation phases, the Air-MPNN determines the transmit power for data transmission, reducing at 

the same time signaling overhead.  

In the Air-MPNN framework the necessity for updating the graph embedding N times for determining the optimal 

transmit power for data transmission introduces additional latency. To this end, this could not be applicable for 

URLLC-like service, where latency and signaling overhead are crucial for some wireless networks. Thus, in [14] it is 

proposed to update graph embedding once for each transmission frame. This approach builds on the fact that CSI 

between sequential frames is temporally correlated. An enhanced version of Air-MPNN, named Air-MPRNN, can 

be implemented which uses information from the previous frame state during graph embedding. 
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Procedure of Air-MPRNN  

Figure 11 depicts the Air-MPRNN framework per frame for distributed power allocation. The problem of the 

interference management is solved in a distributed manner, meaning that each GNN vertex is a pair of HC-SNE and 

the messages from neighbouring vertices are represented by the transmit power of pilots and can be aggregated 

efficiently by evaluating the total interference power. As a result, Air-MPRNN only needs to estimate the total 

interference power from all the interference links and not from each CSI link independently. Considering that the 

pilots from the interference links carry the CSI of the interference links, we can treat the aggregation of pilots as 

the aggregation of the features of the interference links. The basic steps of the Air-MPRNN, which are applied on 

each frame into a multi-subnetwork environment, can be summarised as follows:  

• Calculation of pilot transmit power: At the start of each frame, each vertex’s HC generates a message, 

which is mapped to its pilot signal’s transmit power level. This decision is made by a Multi-Layer-

Perceptron (MLP) utilizing the vertex’s previous local state, stored into its embeddings.  

• Simultaneous Pilot Signal Broadcast: All HCs broadcast their pilot signals simultaneously across the 

network, referred as the Broadcasting Control Signaling Phase. As a result, a superimposed signal is 

generated by the summation of all signals. Error! Reference source not found. depicts this Air-Message-P

assing phase between the subnetworks, where each vertex includes an HC-SNE pair.  

• Aggregation of received signals: Each vertex’s SNE captures the superimposed signal, which contains the 

messages from all neighbour vertices. The SNEs, then, feedback the signal back to its HC pair, referred as 

CSI Control Signaling phase in Figure 11. 

• Local state update (UPD): Each HC updates its local state, and thus its embeddings, using a MLP that 

accepts as inputs the previous state and the aggregated messages. This is the embedding update phase 

in Figure 11.  

• Data transmission power determination: Finally, with the updated local state, each HC determines the 

optimal transmission power of the current frame’s data using another MLP.  The data subframe phase 

that follows in Figure 11, is transmitted with the calculated optimal power. 
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FIGURE 11: DISTRIBUTED POWER CONTROL PROCEDURE 

 

 

 

FIGURE 12: AIR MESSAGE PASSING MECHANISM 

 

2.2.2 NEXT STEPS 

The above solution is currently under development using the srsRAN open source 5G framework in order to apply 

the distributed power control using the GNNs in a 3GPP type of system. Special consideration is needed for the 

downlink power control and overall signaling as depicted in Error! Reference source not found.. Next steps in this f

ramework include obtaining the results, which will be included in deliverable D4.3. Moreover, the solution with 

multiple HCs requires synchronization in order to transmit the frame with the power that has been decided in the 

course of the distributed power control procedure presented above. The way to achieve such synchronization as 

part of the centralized RRM provided by the parent 6G network is also under study and will be discussed in 

deliverable D4.3. 
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3 GOAL ORIENTED RRM  

In chapter 2, different approaches for minimising inter-cell interference among multiple dense subnetworks were 

discussed. The presented solutions focus on optimizing traditional wireless network KPIs, such as meeting 

minimum rate requirements, rather than optimizing the application itself. This section delves into a goal-oriented 

approach [15], tackling the problem of mobile subnetworks such as Autonomous Guided Vehicles (AGVs) 

throughout the factory hall, where two pivotal factors are considered: 

• Contextual Data Utilization:  We leverage context-data, such as velocity and positions, reported from 

AGVs to the central RRM entity. This data is crucial in managing the interference among the subnetworks. 

• Beyond Resource Management: Traditional network resource management often yields suboptimal 

outcomes. Our approach transcends this by focusing on the physical states of the control system. For 

instance, we control AGV speeds to prevent proximity between co-channel subnetworks, thereby 

reducing interference. Simultaneously, we ensure the AGVs meet their operational objectives, such as 

reaching their designated destinations efficiently. 

The uniqueness of this problem as a 6G research topic lies in our dual focus. We aim to optimize not just the 

communication KPis like Signal-to-Interference-plus-Noise Ratio (SINR), typical in conventional network 

optimization, but also control KPIs like each AGV's mission time. [15] This holistic view considers the entire factory's 

performance in the solution, steering us towards an integrated network-control design approach. Such 

methodologies are pivotal in achieving application-oriented network solutions, balancing both control application 

performance and network efficiency. 

Current literature offers varied solutions focusing either on AGV path planning or network optimization in factory 

environments. However, these solutions often overlook the dynamic nature of moving subnetworks in the factory, 

especially considering communication channel factors like multi-path, fast fading, and shadowing. We categorize 

the existing studies as follows: 

1. AGV Control Studies [15][16]: These concentrate on AGV manoeuvring and obstacle avoidance, 

disregarding the impact of communication on AGV performance. 

2. Network Control in AGV Environments [17][18][19]: These works optimize network KPIs for fixed AGV 

application requirements, potentially leading to network resource overprovisioning. 

3. AGV Path Planning with Network Considerations [20][21]: Investigating AGV path planning in static 

network environments, these studies integrate network KPIs into their analysis. 

 

Additionally, related literature lacks approaches for interference management and resource allocation for 

subnetworks among AGVs. This gap needs to be addressed as the coexistence of multiple AGVs’ subnetworks in 

proximity poses challenges in terms of interference and resource allocation, as suggested by the industrial use-

cases presented in deliverable D2.2 [2]. 

  

3.1 PROPOSAL FOR A JOINT NETWORK-CONTROL DESIGN USING REINFORCEMENT LEARNING 

Drawing inspiration from prior research in Wireless Networked Control Systems (WNCS) [22][23], we propose a 

strategy for designing a joint subnetwork-control solution using Reinforcement Learning (RL) principles [24]. WNCS 

are inherently characterized by uncertainties such as variable network delays, packet losses, and changing system 

dynamics. RL thrives under such conditions because it learns from interactions with the environment rather than 

relying on predefined models. By continuously updating its policies based on real-time feedback, RL can adapt to 

the fluctuating conditions typical of wireless networks, optimizing control actions to improve system performance 

and stability. This adaptability makes RL an excellent choice for managing and optimizing the performance of 

WNCS, where traditional control methods might struggle with the network's inherent variability and 

unpredictability. 
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We conceptualize the problem as a Markov Decision Process [24], defining a set of states and actions, 

complemented by a reward function that encapsulates both network and control aspects. Each AGV subnetwork 

is characterized by a data set encompassing the SINR (𝐼) related to the internal wireless communication within the 

AGV, the velocity (𝑣), the sub-band allocation (𝐵), and the 2D position coordinates plus the heading angle (𝑥, 𝑦, 𝜃), 

creating a comprehensive state space representation for each AGV : 𝑆𝑖 = {𝐼𝑖 , 𝑣𝑖 , 𝐵𝑖, 𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖}. 

 

 

FIGURE 13: ILLUSTRATION OF THE MULTI-AGV SUBNETWORK JOINT NETWORK-CONTROL PROBLEM. EACH AGV CONTAINING 

A SUBNETWORK AND PHYSICALLY MOVING TO A PREDEFINED GOAL DESTINATION . 

  

As depicted in Figure 13, the AGVs in our system are independently operating with a pre-defined mission: physically 

move to a goal destination. They routinely send their state information, encompassing key parameters like 

position, velocity, and sub-band allocation of its in-X wireless subnetwork, to the central RRM unit through an 

Uplink connection. In response, the RRM dynamically adjusts the speeds of the AGVs, issuing these commands via 

a Downlink connection. This continuous exchange allows for real-time modulation of AGV behaviour, effectively 

reducing interference among co-channel subnetworks and enhancing overall network efficiency.  
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FIGURE 14: THE GENERAL FRAMING OF THE AGV SUBNETWORK CONTROL PROBLEM. 

  

Central to the system's efficacy is the reward function, intricately designed to consider two critical aspects: the 

time each AGV takes to complete its assigned mission and the SINR they experience during operation. This dual-

pronged approach is pivotal, ensuring that while we actively manage and minimize network interference, we do so 

without compromising the operational performance and task efficiency of the AGVs, as illustrated in Figure 14. 

This challenge mainly involves understanding how the allocation of specific frequency bands to each AGV 

subnetwork affects the ability of the central radio resource management to handle how close the AGVs are to each 

other. This is important because complex issues like shadowing and fading can greatly impact the quality of 

communication and how well the AGVs perform. For example, depending on the shadowing or fading effect at a 

given time, the management of AGV proximity might need to change to maintain effective communication.  

Furthermore, as the number of AGVs operating simultaneously increases, the complexity of the problem escalates. 

This rise in AGV activity introduces challenges not only in maintaining network efficiency but also in managing the 

time each AGV takes to complete its tasks. The increasing complexity caused by the higher number of 

simultaneously operating AGVs requires advanced strategies for coordination and control to make sure each AGV 

works effectively without affecting the whole network and the efficiency of the manufacturing process.  In this 

context, the demand for sophisticated solutions becomes even more critical in intricate environments, where the 

seamless interplay between network management and AGV operations is essential for optimal performance.  
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FIGURE 15: OVERVIEW OF THE NEXT STEPS JOINT NETWORK-CONTROL DESIGN. 

 

The exploration of the reward function forms a core component of our investigation. Diverse strategies are to be 

considered, such as minimizing the mission time of AGVs within a pre-established SINR threshold or defining an 

upper limit on mission time while simultaneously maximizing the SINR across AGV subnetworks. The overarching 

objective is to develop an effective AGV coordination policy that maximizes the long-term efficacy of the reward 

function. As we progress, our research will delve into various solution approaches for this complex problem, 

employing a spectrum of RL techniques. These include Dynamic Programming, Temporal Difference Learning, 

advanced Deep Reinforcement Learning, and decentralized RL, specifically multi-agent RL frameworks. This 

comprehensive approach allows us to adapt and refine our methodologies to suit the intricacies of the problem at 

hand. 

3.2 NEXT STEPS 

As we advance our research into optimizing the coordination and management of AGVs in a 6G environment, the 

contribution to be included in the deliverable D4.3 will focus on further development and refinement of the 

proposed Reinforcement Learning strategies. We plan to delve deeper into evaluating the efficacy of the RL 

algorithms through theoretical analysis and controlled simulations, particularly focusing on their performance in 

dynamic manufacturing settings. These efforts will enhance our understanding of how AGVs interact with each 

other and the network, with an emphasis on minimizing mission times and enhancing signal quality in complex 

scenarios. Additionally, we will explore the integration of more granular real-time data, such as environmental 

variables and AGV operational metrics, to improve the adaptability and accuracy of our RL models. By enriching 

our models with detailed, dynamic inputs, we aim to develop a robust system capable of predicting and mitigating 

potential disruptions before they impact the network or AGV performance. The subsequent report will also 

document the iterative improvements made to our Markov Decision Process models and reward functions. These 

updates will draw from theoretical insights and simulation results to fine-tune our approach, leading to more 

sophisticated control strategies. 
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4 ENABLERS FOR RRM IN SUBNETWORKS 

While the previous sections are mainly focused on algorithmic solutions for radio resource management, 

possible radio enablers implementable in physical (PHY) and medium access control (MAC) layer for supporting 

the required communication needed in those solutions are presented here.   

In a 3GPP context, the support of communication within a subnetwork (e.g. between SNEs and HC device acting as 

AP) and between subnetwork and 6G parent network can be specified as an evolution of NR Sidelink or should at 

least be able to coexist with it. This may be justified by the mature Sidelink framework which includes many 

relevant features for subnetworks, such as, seamless integration with 5G-Advanced and potentially 6G radio access 

network, operation in-coverage and out-of-coverage, power saving features as Discontinuous Reception (DRX), 

inter-UE coordination, relaying, support for license and unlicensed bands, among others [25]. Here, we present 

potential enhancements for enabling subnetwork operations over Sidelink, considering HC to SNE link and HC-to-

HC links (e.g., neighbour subnetworks exchanging information).   

Technology specification to support direct device-to-device (D2D) communication networks has a development 

history in 3GPP cellular standards since Rel-12 with the introduction of Proximity Services (ProSe) in LTE, already 

including in-coverage, out-of-coverage, and partial coverage operation for D2D. The latest 5G NR Sidelink 

specifications support two resource allocation modes; Mode 1 works as a centralized scheme where gNB schedules 

the resources to the connected devices for communicating with other devices via Sidelink, and Mode 2 works as a 

distributed resource allocation for in-coverage and out-of-coverage devices, which autonomously allocate the 

resources [25] .  

Despite the advances in Sidelink, still some enhancements are needed for enabling subnetworks with most 

stringent requirements. The existing Sidelink Mode 2 resource allocation has a flat topology, i.e., there is no 

distinction of UE roles such as subnetwork HC device or subnetwork SNE device. This means that there is no entity 

which can be responsible for allocating resources for all the UEs involved in a subnetwork, and each device 

performs resource selection by itself subject to potential collisions or increased implementation complexity. Also, 

Mode 2 has challenges in terms of power consumption versus reliability in dense cases, as a continuous/full sensing 

would be needed by UEs trying to avoid selecting a same resource. In Rel-16 NR Sidelink, resource re-evaluation 

mechanisms allow a UE to check and reselect if late arriving reservations will cause conflicts with its selected 

resource, while pre-emption mechanisms allow a UE to re-select if it detects a conflicting high priority reservation. 

However, these mechanisms require fast reaction an complex implementation for UE that needs to constantly 

monitor, decide and signal re-selection of resources. In Rel-17, inter-UE coordination (IUC) was introduced in 

Sidelink for reducing half-duplex issues and hidden-node collisions including two different schemes. In IUC scheme 

1, receiver UEs can indicate the (non) preferred resource set indication to transmitter UEs via MAC control 

messages. In IUC scheme 2, receiver UEs can indicate conflicting resources to transmitter UEs via a feedback 

channel. The cost of IUC is increased signal overhead and slow reaction since resource conflicts can only be 

mitigated if reservations are provided well in advance. Additionally, it may be difficult to coexist subnetworks with 

devices of different characteristics without a static partitioning of the resources. Some issues include in-band 

emissions (IBE), automatic gain control (AGC) tuning, etc. Here we discuss ways to improve resource coordination 

by distinguishing control channels for HC-HC and for HC-SNE communications, assuming subnetworks being 

enabled on top of Sidelink interface. In addition, we discuss issues and enablers for coexistence of multiple HC-SNE 

communications or HC-HC communications in a shared band. 

 

4.1 SUBNETWORK RESOURCE POOL RESERVATIONS 

Existing Sidelink mechanism is not optimized for URLLC since in one hand sensing procedures may be lengthy for 

better detecting reserved occasions, while on the other hand fast partial sensing and random selection procedures 

are more prone to collisions. Nevertheless, some Sidelink features, such as the Mode 2 resource reservation and 

IUC procedures can still be relevant for inter-subnetwork communication and coordination, assuming the critical 

communication happens within the subnetwork. According to existing Mode 2 mechanism, reservations of future 
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radio resources can be done in two ways; (i) a semi-persistent transmission manner where the same resources are 

used for a (longer) period of time and then from time to time subject to re-evaluation, or (ii) an initial transmission 

(reservation signal) may indicate future resources for repetitions or retransmissions. It should be noted that: 

• Reservations are constrained to use the same transport block (TB) size. 

• Reservations signal provided in a first transmission is still subject to collisions which may render the entire 

transmission undecodable. 

• Reservations are constrained to a single slot (i.e., a transmission time interval of one TB), hence longer 

consecutive slots are not feasible for licensed band operation (for unlicensed band, multi-slot reservations 

are possible in Rel-18) [26]. 

One enhancement for subnetworks is that HC devices acting as APs should be capable of reserving shares of the 

Sidelink resource pool for intra-subnetwork communication. Based on this enhancement, the HCs can have the 

role of selecting resources in the resource pool to be needed for its own purpose or to be used for its subnetwork 

operation, i.e., communications from, to, and among the SNE devices in the subnetwork.  

For enabling such feature, an HC-to-HC control signal can be introduced for subnetworks, e.g. in a form of 

enhanced Physical Sidelink Control Channel (ePSCCH), to exchange sub-pool reservations. Similarly to existing 

PSCCH, the ePSCCH indicates its current reservation (e.g., in the first slot where ePSCCH is transmitted) as well as 

future reservation with sufficient time to resolve conflicts among sub-pool used by different subnetworks, while 

the conflicts can be resolved by re-evaluation, pre-emption and IUC mechanisms existing in Sidelink. For example, 

an HC from a neighbour subnetwork may sense the sub-pool reservation indicated by the ePSCCH transmitted by 

other HCs and exclude all the sub-pool resources from its resource selection procedure. 

In addition, the HC may transmit a subnetwork specific PSCCH (sPSCCH) towards its SNEs informing which resources 

are available. This may be transmitted with a much lower transmit power compared to ePSCCH, and contains 

resource reservation indications for reception or transmission towards each sub-network device, in the current 

reserved sub-pool. The SNEs may only need to monitor HC-to-SNE control signal for determining sub-pool 

resources which can be used for intra-subnetwork communication, by that avoiding inter-subnetwork collisions 

while reducing sensing overhead for the devices. Figure 16 illustrates an example of a resource pool being used by 

three subnetworks, which coordinate sub-pool resource usage by means of ePSCCH, used at least for HC-to-HC 

resource reservation and coordination, and sPSSCH signals towards the SNEs informing which resources are 

available for intra-subnetwork communication.  
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FIGURE 16: EXAMPLE OF SUB-POOL RESOURCES RESERVATION BASED ON EPSCCH AND SPSCCH. 

 

The combination of subnetworks devices and communication between HCs pose a challenge when using the same 

spectrum, as the two links may need a very different transmit power. For example, an HC may need to transmit 

with 10-20 dBm to reach another HC (including ePSCCH), while it only needs to transmit between -20 to 0 dBm 

towards its SNEs (including sPSCCH). This may cause significant adjacent channel leakage if the two transmissions 

occur in the same time instances and in nearby frequency resources. For that reason, there is a need to ensure 

that HC-to-HC and intra-subnetwork transmissions are not adjacent in frequency at the same instant, meaning that 

ePSCCH and sPSCCH may be time multiplexed. 

An advantage of the sub-pools reservations is that the SNEs are not required to perform full monitoring of the 

resource pool, i.e., reducing the effort of detecting and decoding PSCCHs which are not of interest. Further, the 

DRX active time can be aligned with the sub-pool slots, improving power saving. Additionally, the sub-pool 

reservations informed from one HC allow its neighbour HCs to perform their own sub-pool reservations such that 

they avoid as much as possible the adjacent sub-pools that suffer from power leakage, especially if the 

transmissions from adjacent sub-pools are high power transmissions.  

 

4.2 IBE MITIGATION FOR SUBNETWORK RESOURCES 

Another issue which should be considered on the resource management for intra-subnetwork and inter-

subnetwork communication is the impact of IBE, especially when assuming frequency domain multiplexing of 

subnetwork traffic. IBE is the result of power leakage from the allocated transmission resource to the non-allocated 

transmission resource in the frequency domain, which is mainly caused by transceiver impairments such as IQ 

imbalance, nonlinearity of RF components, quadrature imbalance and carrier leakage [27]. The IBE is measured as 

the ratio of the UE output power in a non–allocated resource block (RB) to the UE output power in an allocated RB 

[28]. The problem is further aggravated in unlicensed bands which the UEs may use interlaced resource allocation, 

as it was introduced for NR-U and Sidelink unlicensed, for meeting regulatory requirements of occupied bandwidth 

(OCB) and power spectral density (PSD). An interlace consists of at least 10 resource blocks equally spaced, such 
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that the OCB requirement is fulfilled (minimum of 80% of the carrier bandwidth according ETSI standards). Figure 

17 illustrates an example of interlaced allocation in comparison with a usual contiguous allocation approach. 

 

FIGURE 17: EXAMPLE OF CONTIGUOUS AND INTERLACED RB ALLOCATION AND ILLUSTRATING POTENTIAL POWER LEAKAGE. 

 

Figure 18 shows an example of IBE level assuming existing 3GPP requirements, as defined in TS 38.101-1 6.4.2.3 

and 6.4F.2.3 for licensed and unlicensed spectrum respectively [28]. Specifically, it shows based on the general 

limit component of the model, the emission level relative to the average power per allocated RB (assuming 

allocated 10 RBs) for each non-allocated RB located ΔRBs apart of the allocated RBs. More detailed explanation on 

the IBE parameters is found on the notes described in the model in the TS 389.101-1 specifications. In this example, 

for UEs which just strictly satisfy these requirements, the relative emission level towards a neighbour unallocated 

RB can be up to -24.9 dB in licensed and -10 dB in unlicensed. With interlaced allocation assumed in unlicensed, 

such high leakage may affect every RB of a neighbour interlace. 

 

 

FIGURE 18: IBE GENERAL COMPONENT COMPARISON, ASSUMING AVERAGE EVM OF 8%. 

 

The impact of IBE interference can be significant when two Tx UEs use adjacent resources as well as in resources 

where the IQ image is located, and where one Tx UE is close to an Rx UE, while the other Tx UE is far from the Rx 

UE (i.e., near-far problem). In a scenario where devices use distributed resource allocation, a transmitter might not 

be aware that it is selecting an interlace that will cause an issue for a receiver (e.g. due to the hidden node issue). 

In Sidelink communication, the hidden (and exposed) node issue is designed to be handled via the IUC framework 

which was introduced in Rel-17 but has not been designed to handle the IBE aspect.  

A simplified scenario where IBE issues occur is illustrated in Figure 19-A. In a subnetwork context, the UEs may be 

HC devices acting as APs which exchange HC-to-HC data. In another example, a receiver UE (RX UE 1) may be a SNE 

receiving low power signal from its HC (TX UE 1), while another HC (TX UE 2) may be transmitting data to another 
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HC (RX UE 2) in an adjacent resource. As illustrated in Figure 19-B, the IBE leakage (red dotted line) from TX UE2 

over the adjacent resource where TX UE1 transmits will be perceived as increased interference power by RX UE 1, 

i.e., degrading its SINR for receiving from TX UE 1. Note also that the transmission from TX UE 1 could potentially 

cause IBE issues to RX UE 2 as well, depending on the transmit power and the channel between these devices. 

 

 

 

 
(A): EXAMPLE OF IBE SCENARIO (B): SKETCH OF EXPERIENCED POWER PER RB 

 
FIGURE 19: EXAMPLE SCENARIO WHERE IBE ISSUES MAY OCCUR (A) AND SPECTRUM POWER SEEN FROM RX UE (B)  

 
The impact of IBE in a subnetwork deployment is evaluated for an indoor classroom scenario, such as for an 

immersive education use case. The two resource allocation modes are considered, i.e., contiguous and interlaced. 

Also, the evaluation considers both HC-to-HC communication and SNE-to-HC communication, as illustrated in 

Figure 20. The HCs may be smartphones which exchange multimedia content to another smartphone located 

anywhere in the room. These devices are assumed to be of a high-power class transmitting with a power such as 

10dBm. While the SNEs are assumed to be of a low-power class and transmit in short distance to their local 

subnetwork HC with a power of -20 dBm. Such a scenario could be envisioned, for example, for an indoor classroom 

use case where the SNEs are haptic devices connected to HC devices such as smartphones or smart glasses which 

allow the pupils to interact in a virtual world. 

 

  
(A): SNE-HC CASE (B): HC-HC CASE 

 
FIGURE 20: EXAMPLE OF IBE SCENARIO IN SNE-HC COMMUNICATION (A) AND IN HC-HC COMMUNICATION (B)  
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The evaluation is performed using system level simulations with the assumptions mainly based on the evaluation 

methodology adopted for the 3GPP Rel-18 NR Sidelink evolution [26][29], with some adaptation for the 

subnetworks use case such as denser deployment in a smaller area and short-distance low-power SNE-to-HC 

communication. Table 6 summarizes the evaluation assumptions in the study.  

 

TABLE 6. EVALUATION PARAMETERS USED TO STUDY THE IMPACT OF IBE IN SUBNETWORKS. 

Parameter Value 

Scenario A single room of 20 m x 20 m x 3 m (length x width x height) for indoor classroom.  

Subnetwork 
deployment 

10 subnetworks are deployed at a random location in the scenario. Each 
subnetwork consists of 1 HC entity acting as AP and 1 SNE communicating with the 
HC at a time (frequency multiplexing within subnetwork is not considered) 
SNEs are deployed with up to 2.5 m distance apart from the HC device which they 
connect. The subnetworks do not overlap in space. 

Channel model Indoor mixed office (InH) from 38.900. 

Traffic modelling Aperiodic traffic following Poisson arrival model (FTP model 3)  

- 500kB payload (transport layer payload is 1500B) 

- 0.35 packet/s for the low load (<25% UE buffer occupancy) and 0.75 packet/s for 
the high load (>55% UE buffer occupancy) 

Antenna 
configuration 

1 TX, 2 RX antenna configuration 

Carrier frequency 
and bandwidth 

5 GHz carrier frequency with 20 MHz bandwidth (unlicensed band in FR1) 

Slot structure Orthogonal frequency division multiplexing (OFDM) with 15 kHz SCS 
Assuming Sidelink slot configuration with 14 symbols per slot 

10 out of 14 symbols are overhead (to account 2 DMRS, AGC, GP) 
Control channel equivalent to 2 RBs of the sub-channel 

Sub-channel 
configuration 

10 sub-channels of 10 RBs per sub-channel  
For interlaced allocation it is equivalent to 1 interlace in 20MHz 

Scheduling SL mode 2 autonomous selection randomly in a 20 ms selection window. 
No inter-subnetwork scheduling coordination 

Link adaptation Fixed modulation and coding scheme (MCS): 256QAM 4/5 for data, QPSK 1/10 for 
control 

Power control Fixed transmit power of 10dBm for HC in HC-to-HC communication and -20 dBm for 
SNEs in SNE-to-HC communication 

LBT Listen-before-talk procedure (Type 1 or Type 2 within a channel occupancy time 
according to TS 37.213) assumed with energy detection threshold of -72 dBm  

IBE modelling Based on minimal requirements from 3GPP TS 38.101-1 [28] 

- Table 6.4.2.3-1 assumed with contiguous RB sub-channel allocation 

- Table 6.4F.2.3-1 assumed with interlaced RB sub-channel allocation 

 

Note that, by assuming minimal requirements for IBE modelling, the assumptions can be seen as a worst-case 

scenario since devices could be designed to perform better than these requirements. However, an improved 

design, e.g. with lower IQ imbalance and lower EVM, implies higher manufacturing cost. 

Note also that the frequency of choice in unlicensed band is mainly for the sake of obtaining comparable results 

for the contiguous versus interlaced allocation which is typically required in unlicensed bands. However, the 

observations can be generalized for different frequency bands at least for the contiguous allocation cases. First, 

the results for the HC-to-HC communication are discussed. The empiric cumulative distribution function (CDF) of 

the average SINR experienced by each receiving node are displayed in Figure 21 for low and high load cases. The 

solid curves (IBE: no) represent the performance for baseline idealistic cases where IBE effect is not considered, 

while the dashed curves (IBE: yes) represent the performance when IBE is considered. It can be noticed that there 
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is a large gap between the ideal case and the cases with IBE. Taking for example the 50%-ile value for interlaced 

and for contiguous RB sub-channel allocation, respectively, the difference compared to the baseline is 21.5 dB and 

11 dB in low load, and 30.8 dB and 19.6 dB in high load. The performance is noticeably worse for the interlaced 

allocation given that the worst-case IBE general term affects not only a few RBs but all the RBs of the adjacent sub-

channel, and moreover in a higher level (see Figure 18) as compared to the general term of contiguous allocations. 

 

 
 

 

(A): HC-TO-HC SINR WITH LOW LOAD (B): HC-TO-HC SINR WITH HIGH LOAD 
 

FIGURE 21: CDF OF THE AVERAGE SINR FOR HC-TO-HC 
 

Figure 22 shows the average SINR performance for the SNE-to-HC communication cases. It is noticeable that the 

performance gap between the ideal case without IBE and the cases when IBE is considered is much lower compared 

to the HC-to-HC communication. For the 50%-ile, the differences are 6.1 dB and 2.5 dB in low load, and 10.6 dB 

and 4.2 dB in high load, for interlaced and contiguous RB sub-channel allocation, respectively. The IBE impact for 

SNE-to-HC is lower compared to HC-to-HC because the latter uses higher power, and in addition it is more 

susceptible to near-far effect, given that HCs may communicate with any HC in a room, and not only to their 

vicinity. Still, the effect for SNE-to-HC is not negligible even in low load, specifically in the low percentiles of the 

distribution.  
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(A): SNE-TO-HC SINR WITH LOW LOAD (B): SNE-TO-HC SINR WITH HIGH LOAD 
 

FIGURE 22: CDF OF THE AVERAGE SINR FOR SNE-TO-HC 
 

Based on the above, it is observed that IBE should be considered if frequency-domain multiplexing is applied for 

subnetwork communications including HC-to-HC and SNE-to-HC in a shared carrier.  For interlaced allocation, the 

impact is significant on the average SINR performance when load increases. On the lower percentiles of SINR CDF, 

which dictates URLLC performance, the impact is still high even in low load with interlaced or contiguous allocation 

modes. 

Below we discuss some potential enablers to mitigate the IBE issue for subnetworks includes the following: 

• Enabler A: Time-domain multiplexing 

Time-domain multiplexing of communication between subnetworks and within subnetworks can be 

applied to avoid IBE issue at least when the QoS requirements allow. In terms of complexity for RRM 

implementation, TDM is a low complex alternative which should provide performance close to the 

baseline, i.e., with no IBE shown in the results. However, the latency performance may be degraded with 

TDM, due to the TX slot alignment depending on the frame configuration. For completely mitigating the 

issue with TDM, for example, by assigning dedicated slots for each subnetwork in a band, the average 

latency may increase linearly with the number of subnetworks, which may be prohibitive for low latency 

use cases. 

• Enabler B: Stricter IBE requirements in UE radio transmission and reception standards 

In this study it was assumed that the HC devices and SNEs implementation just meet the exact minimum 

requirements for in-band emission as specified in 3GPP TS 38.101-1. However, if subnetwork devices 

implementation can perform better than the current minimum requirements, the impact of IBE can be 

much reduced. Figure 23 shows an example of performance for high load case when the IBE general term 

is assumed to be 6dB lower than the current limit in the specifications. For the HC-to-HC case, the 

difference on the 50%-ile SINR compared to the baseline reduces to 17.8 dB and 12.6 dB for interlaced 

and contiguous allocation, respectively. For the SNE-to-HC case, the difference reduces to 3.2 dB and 1.7 

dB. The advantage of this solution is that it reduces the need for a RRM mechanism to deal with the issue, 

therefore avoiding higher complexity in the resource selection procedure in the device. However, stricter 

RF requirements in standards, may impose more advanced physical layer designs, such as better isolation 

and filtering to reduce spurious emissions, therefore impacting hardware costs. That may be acceptable 

for HC devices, however, for low cost SNEs such solution may not be desirable. 
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(A): HC-TO-HC SINR WITH 6DB IBE REDUCTION (B): SNE-TO-HC SINR WITH 6DB IBE REDUCTION 
 

FIGURE 23: CDF OF THE AVERAGE SINR IN HIGH LOAD CONSIDERING 6 DB REDUCTION FOR THE IBE GENERAL TERM  
 

• Enabler C: Adapting transmission starting point for blocking adjacent resource transmissions in vicinity  

At least for unlicensed spectrum operations, where listen-before-talk  procedures are implemented, a 

subnetwork device may be configured to apply a change on its transmission starting point when 

determining that a resource reservation from another subnetwork device (detected, for example, via 

sensing procedure in sidelink) indicating a transmission on the same slot and band (albeit with a different 

interlace) will (i) cause IBE issues to the reception of the subnetwork devices own transmission or (ii) that 

the subnetwork devices own transmission will cause IBE issues to the reception of other subnetwork 

device transmission. This solution can be implemented using cyclic prefix (CP) extensions available in the 

Rel-18 Sidelink evolution. 

In one example illustrated in Figure 24-B, a UE A which is preparing to transmit on a selected resource on 

an interlace a, if it senses a resource reservation from a UE B on an interlace b and the separation in 

frequency w between the interlaces is within at least one interval W=[wL, wH], UE A may change its 

transmission starting point to be later than the starting point of the transmission of UE B. The change of 

transmission starting point may be decided based on one or more of the following criteria:  

o Resource reservation of UE B is for a transmission with higher priority than of UE A.  

o Resource reservation of UE B has an estimated receive power y higher than Y. 

o Distance d between UE A and the receiver of UE B is lower than a value D, assuming UEs has 

location information from each other. 

The change of transmission starting point can be implemented by using a shorter CP extension in 

comparison to CP extension to be applied by UE B, or by puncturing the start of the AGC symbol which is 

present in the beginning of the Sidelink slot.   

The basic principle of the mechanism is to ensure that, if UE B succeeds to start a transmission on interlace 

b, then UE A should be automatically blocked to start transmitting on interlace a by the LBT procedure (as 

the LBT will sense the energy of UE B transmission which starts earlier), therefore the transmission of UE 

B, if occurring, will not be harmed by the IBE from UE A. And if UE B transmission does not actually start 

on the reserved resource (e.g., due to LBT failure, re-evaluation, or transmission dropping) or if UE B 

moves away, then UE A still has a chance to start transmitting on interlace a later.  

In another example illustrated in Figure 24-C, a UE A which is preparing to transmit on a selected resource 

on an interlace a, if it senses a resource reservation from a UE B on an interlace b and the separation in 

frequency w between the interlaces is within at least one interval W=[wL, wH], UE A may change its 
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transmission starting point to be earlier than the starting point of the transmission of UE B, based on one 

or more of the following criteria:  

o Resource reservation of UE B is for a transmission of lower priority than of UE A. 

o Resource reservation of UE B has an estimated receive power y higher than Y. 

o Distance d between receiver of UE A and the transmitter UE B is lower than a value D. 

The change of transmission starting point can be implemented applying a longer CP extension in 

comparison to CP extension applied by UE B. 

In this case, the basic principle is that transmission of UE A (e.g. of higher priority) starts earlier and blocks 

the start of the lower priority transmission of UE B in the adjacent interlace, i.e. avoiding the lower priority 

transmission to cause IBE issues to the higher priority one at least in the vicinity area. 

The main advantage of this solution is that it allows protecting transmissions, e.g. of high priority, from 

the effect of IBE without changes on scheduling or UE coordination mechanisms, since the blocking of an 

IBE source transmission from UEs in vicinity relies on the LBT outcome. The downside of this solution is 

that it increases the dropping rate of low priority transmissions. 

 

 
 

  

(A): UNCHANGED STARTING POINT  (B): LATER STARTING POINT APPLIED (C): EARLIER STARTING POINT APPLIED 
 

FIGURE 24:  EXAMPLE OF CHANGING TRANSMISSION STARTING POINT FOR BLOCKING IBE SOURCE TRANSMISSION 
 

• Enabler D: IBE aware inter-UE coordination mechanisms  

In this solution, the subnetwork devices should exchange resource reservation, e.g. through ePDCCH for 

coordination between HC-HC and sPDCCH for coordination between HC-SNE as mentioned in previous 

section, and additionally the indication may also include an information of power class or expected 

transmit power in the reserved resources of the sub-pools. The receiving devices sensing the reservations 

can then determine how severe the IBE will impact its reception and based on that it provides this 

information to the transmitting device, such that resources prone to suffer from IBE issues are indicated 

as non-preferable resources. As shown in Figure 25, the implementation of this solution can be based on 

enhancing the Sidelink IUC framework such that a UE can determine its preferred/non-preferred 

resources in IUC scheme 1 considering the impact of IBE from one interlaced RB or contiguous RB sub-

channel to another. That includes IBE aware triggers for requesting or sending IUC Scheme 1 indications. 

The conditions to include a sub-channel in the set of non-preferred resource may follow similar criteria as 

described in Enabler C. 
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FIGURE 25: IBE-AWARE INTER-UE COORDINATION SCHEME (RED STEPS HIGHLIGHT IMPACT ON EXISTING IUC PROCEDURE). 

 

4.3 NEXT STEPS 

In the study presented above, it is assumed that HC-to-HC and SNE-to-HC communication are not multiplexed 

together in a same band. That already helps avoiding that IBE leakage of high-power communication towards low 

power communication resources, as well as other issues such as AGC adjustment. However, it implies that enough 

bandwidth is available to separate the channels of HC-to-HC link from the SNE-to-HC link. In future studies we 

should consider coexistence of these two types of communication in a shared band. That includes studying the 

impact on the performance when high and low power subnetworks communication are time-frequency 

multiplexed in the same band assuming firstly that reservations are not IBE aware, as a baseline. And further, some 

selected IBE mitigation methods that can be applicable for licensed or unlicensed bands should be studied, such 

as stricter IBE requirements and the use of semi-static sub-pools reservations assuming the devices are IBE-aware. 
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5 DETECTION AND MITIGATION OF EXTERNAL INTERFERENCE  

Subnetworks may not only suffer from interference coming from other subnetworks, but also from interference 

created by other radio technologies active in the same location (in case they are operating over the same 

spectrum), and potential malicious interferers (e.g., jammers). We present here potential solutions for detecting 

and mitigating such external interferers. The solutions presented here are mainly to be applied to industrial and 

in-vehicle use cases, where external interference can be a serious threat to the critical applications to be 

supported. 

Networks and smart factories are becoming more agile, flexible, variable, and therefore more complex. This ever-

increasing complexity makes it difficult for operators to monitor processes and identify deviations. Problems and 

failures are often detected too late, and maintenance intervals are not chosen correctly. Intelligent systems for 

early detection of anomalies or mitigating interference can provide significant relief by detecting deviations at an 

early stage and avoiding production downtime.  

In the following, we present in section 5.1 a brief background on types of anomalies from a general perspective, 

then section 5.2 shows anomaly detection methods and approaches. These two sections represent a general 

framework and introduction into radio related techniques used to detect and mitigate cellular and non-cellular 

interference discussed in the last section 5.3 and will build upon it on future contributions.   

5.1 TYPES OF ANOMALIES 

The field of anomaly detection tries to identify instances of a dataset that are unusual or differ significantly from 

most of the data. Anomalies differ decisively in their occurrence, where they can be divided into three types: 

Global/point Anomalies 

This category represents the simplest outlier type and is the focus of most research papers. A single Global or Point 

anomaly can be defined as an instance of data that can be classified as anomalous with respect to entire dataset. 

In Figure 26, in 2D space, a single point shows up, where clearly the dataset can be divided into three clusters. 

Since the suspected pointed cannot be mapped to any of them, it is classified as anomaly point. 

 

FIGURE 26: POINT ANOMALY EXAMPLE IN A 2D DATASET. 

 

Collective Anomalies 

In each dataset, a collective of related instances of anomaly can be identified as anomalous; and so-called collective 

anomalies. However, by looking at these instances individually, these may not be recognized as an anomaly, but 

their occurrence in the collective justifies a designation as an outlier when compared to the overall dataset, as 

shown in the Figure 27.  
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FIGURE 27: COLLECTIVE ANOMALY REPRESENTATION IN AIR TEMPERATURE RECORDS . 

 

Contextual Anomalies 

An instance is classified as contextual anomaly if it appears to be anomalous in a specific context. For instance, in 

the Figure 28, the marked data points represent unusual observed temperatures.  

 

 

FIGURE 28: CONTEXTUAL ANOMALIES REPRESENTATION IN AIR TEMPERATURE RECORDS 

 

5.2 ANOMALY DETECTION AND CLASSIFICATION METHODS  

In the following, different classification methods are listed. Probabilistic methods consider certain probabilistic 

assumptions about the occurrence of events. The evaluation of instances is considered in terms of their probability 

distribution. Instances with very low probability are defined as outliers. The robust covariance estimator works 

according to this principle. 

• Distance and Density methods: Non-parametric methods consider and evaluate data points in relation 

to their environment. If there are enough similar data points around an anchor data point, the data will 

be classified as normal. This similarity is usually represented by the distance between the data points. 

The k-nearest neighbour algorithm works on this principle. 

• Clustering methods: These methods look for grouping of similar objects and structures. Instances are 

grouped in such a way that the data within a group is as similar as possible, but the data of different 

partitions is as different as possible. Instances that cannot be assigned to any group are classified as 

outliers. 

• Reconstruction methods: These methods attempt to detect patterns in the data, with the aim of being 

able to reconstruct the signal without noise. Well-known algorithms that belong to these are for 

example, Principal Component Analysis (PCA) and Replicator Neural Networks (RNN).  

Most approaches try to model the regions in feature space that describe the normal behaviour of the process 

under consideration. Anomalous data is defined as data outside the defined region. However, several factors 
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challenge this relatively simple approach. In practice, it is usually not possible to clearly define the normal region, 

the boundaries between normal and anomalous behaviour are not always clear. The set of all samples of normal 

and anomalous behaviour can be described by probability distributions. Both distributions are rarely separated 

from each other, and an overlap arises, thus a unique classification of normal instances and anomalies is not 

possible. 

Anomaly detection algorithms usually evaluate each data point with an anomaly score, which is a preliminary step 

for subsequent decision-making. Samples are classified as anomaly or normal with respect to the anomaly score 

according to a predefined threshold. The threshold value represents system sensitivity and depicts a 

hyperparameter that needs to be designed for each use case, where an evaluation of the misclassification 

consequences should be tackled. The True Positive Rate (TPR) and False Positive Rate (FPR) are indispensably a 

trade-off with each other. For example, decreasing the threshold will result in increasing both TPR and FPR. 

Determining the optimal threshold value that leads to the primary expected goal requires additional knowledge 

about the process. In industry, the cost-optimal threshold is the primary goal especially when considering 

commercial applications. For instance, an equipment failure and huge repair work can result if an anomaly cannot 

be detected, while a threshold that results in high FPR leads to a great control effort. For the sake of completeness 

and to explain this trade-off further, the literature uses a healthcare example. In cancer detection tests, a low 

threshold is appropriate. Failure to detect the test in a healthy patient merely leads to further testing, whereas 

failure to detect early-stage disease reduces the patient’s likelihood of survival. Thus, a high TPR is weighted higher 

than a low FPR. 

 

5.2.1 ALGORITHMS AND METHODS USED FOR ANOMALY DETECTION. 

In anomaly detection field, a vast variety of different algorithms and approaches are used in the literature. Figure 

29 depicts a structure of well-known methods in this field. Two main categories are often used. The first category 

focuses on unsupervised outlier detection, where robust covariance estimator, Isolation Forest, one class Support 

Vector Machine (SVM), and autoencoders in the field of deep learning are primarily used. The second category 

primarily considers model-based approaches like time series analysis and regression analysis. With the help of 

model-based approaches, models are set up which can reproduce and predict the behaviour of a process under 

consideration.  
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FIGURE 29: AN OVERVIEW OF ANOMALY DETECTION ALGORITHMS  

 

5.3 IN-X-SUBNETWORKS EXTERNAL INTERFERENCE MITIGATION  

Interference poses a significant challenge within dense subnetworks, potentially impeding the stringent 

communication demands related to throughput, latency, and reliability. Consequently, extensive research focuses 

on interference management and mitigation techniques to address this issue. Besides intra- and inter-cell 

interference, the system needs to be robust in managing different types of radio interference, that could be caused 

by rare events while still being very troublesome. Regarding the in-X subnetworks, two important sources of non-

cellular forms of interference that need to be considered and represent an important area for future research are: 

jamming attacks and impulsive noise. 

 
 

5.3.1 IN-X-SUBNETWORKS CELLULAR AND NON-CELLULAR INTERFERENCE TYPES 

The deployment of in-X subnetworks can result in dense scenarios, potentially leading to high interference levels. 

Common examples include congested roadways with numerous vehicles, or  robots in a crowded factory. In certain 

situations, subnetworks may even coexist in the same physical location. For instance, an in-body subnetwork 

installed in a person sitting inside a car could share space with an in-vehicle subnetwork. While short-range 

transmission, extensive spectrum utilization, and spatial/frequency diversity enhance the desired receive signal, 

external interference remains a critical concern, particularly for life-critical services. A major consequence of in-X 

subnetworks is heterogeneous systems, and the wide variability of environments leads to potentially impactful 

interference. Future in-X networks will face two challenges: robustness and adaptability, with high energy and 

lifetime constraints.  
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Impulsive noise is an unintentional process that comprises cellular and non-cellular interference. While the non-

cellular can be generated by industrial machineries or robot movement, the cellular impulsive noise may arise from 

a realistic physical mechanism under some reasonable assumptions and conditions. Increasing the number of 

communication devices without more available frequency bands inevitably implies stricter spatial reuse of radio 

resources. If we try to limit interference (interference alignment) or to consider them as a signal (Network Coding 

[30]), high complexity arises because of the required knowledge of timing and channel response. Moreover, trying 

to create systems without interference is a sub-optimal strategy [31]. Alternatively, the optimal approach is to 

consider the interference as noise and create codes that take advantage of it [31]. However, if they are considered 

as noise, their statistical nature depends strongly on the environment, and they are often not Gaussian but have 

impulsive characteristics [32]. The problem is that most of the communication systems implemented are based on 

Gaussian assumption: the capacity is well studied with additive Gaussian noise, but less with impulsive 

interference; the conventional linear receiver under the Gaussian noise assumption is not suited anymore and new 

strategies must be implemented; even the SNR is not sufficient to represent the link quality and another criterion 

must be defined. 

Intended malicious smart jammers can disrupt the communication link quality and pose a major threat to meeting 

extreme performance requirements. A smart jammer can indeed learn timing, frame, and traffic pattern of an in-

X subnetwork, with periodic traffic that characterizes most of the control loops and emulate its transmissions with 

potentially disruptive effects. When jamming occurs, it disrupts communication and can cause performance issues 

and instability in wireless networked control systems. 

Even if jamming seems a more dangerous threat because it is caused by a malicious attacker, whereas the 

impulsive noise is an unintentional process as described previously, the system still needs to be robust against both 

cellular and non-cellular forms of interference; even if they might be considered as rare events in the existing 

systems. These types of interference are very troublesome to the system performance, especially when we 

consider life-critical services . 

 

5.3.2 PHYSICAL MECHANISMS THAT LEAD TO NON-CELLULAR INTERFERENCE.  

Network heterogeneity comes out in ad-hoc networks and small-cells due to the variations in transmit power 

constraints and the varied placement of the transmitters. In-X subnetworks satisfy these characteristics, thus are 

considered as heterogenous networks. In heterogenous networks like in-X subnetworks, different transmission 

protocols in a common band are used, and multiple applications are considered, etc, resulting in different data 

types and different symbol durations as shown in Figure 30. Physical mechanisms that lead to noise which is 

impulsive by nature and characterized by heavy-tailed distributions may be generated by the following conditions. 

• Multiple coexisting communication systems that share the same band, for instance, the ISM band. 

• The rapid change in time of the active set of transmitting devices (e.g., machine-to-machine 

communications, where rare and short packets are transmitted). 

• Uncoordinated access between different networks, such as Sigfox and LoRa (using ALOHA). 

• Different PHY and MAC layer protocols. 

• Different data types. 

• Different symbol durations. 

• Different data traffic flows. 
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FIGURE 30: COEXISTENCE OF TECHNOLOGIES IN THE 2.4-GHZ BAND. MEASUREMENTS MADE BY THE NATIONAL 

INSTRUMENTS USRP [33] 

 

 

5.3.3 NON-CELLULAR INTERFERENCE DISTRIBUTIONS 

Some classical noise models encountered in the literature are reviewed in this sub-section. The Gaussian noise 

model represents accurately the thermal noise in the receiver. However, dealing with dense and heterogeneous 

networks, i.e. future networks, the interference may exhibit impulsive behaviours [32] and the Gaussian 

assumption is no longer suited. Thus, several approaches have been discussed in [34] to consider the impulsive 

behaviour that includes: 

• Theoretical approaches (e.g., alpha-stable distributions, Middleton class A distributions, etc.).  

• Mixture model approach (e.g., Gaussian mixture, Generalized Gaussian mixture, epsilon-contaminated, 

etc.).  

• Empirical approaches (e.g., Pareto model, T-student model, etc.).   

One can note that the models cover the main solutions and are not an extensive list of the different impulsive 

models. Furthermore, the extreme reliability requirements of life-critical applications supported by the in-X 

subnetworks require a detailed characterization of the tail of the interference distribution; accordingly, these 

approaches consider heavy tailed distributions instead of exponential distributions that captures well the 

characteristics of the Gaussian noise. 

 

Main challenges to consider when dealing with heavy tailed distributions: 

• Statistical moments: Almost do not exist. 

• PDF for most distributions: no closed expression. 

• Conventional receivers are designed based on Gaussian assumption. 

• Adopting heavy tailed distribution for receiver design: Receivers become complex and computationally 

prohibitive. 

• Dynamic interference at different realizations as shown in Figure 31 (top), where six different examples 

of interference realizations from different models are represented. 

• Detection: Non-linear decision regions as shown in Figure 31 (bottom), where the decision regions that 

the optimal receiver must produce in a binary case under different interference models.  
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FIGURE 31: (TOP) EXAMPLE REALIZATIONS FOR EACH DIFFERENT SUB-EXPONENTIAL IMPULSIVE NOISE PROCESSES. (BOTTOM) 

OPTIMAL DECISION REGIONS FOR THE DIFFERENT INTERFERENCE PROCESSES  [34]. 

 

In the literature, different channels models are represented for the impulsive noise. However, alpha-stable 

distributions shows a big interest for different reasons starting from theoretical proofs as shown in [32][34], to the 

Generalized Central Limit Theorem (GCLT) which states that the only possible non-trivial limit of normalized sums 

of i.i.d terms (without finite variance) is stable also for some experimental measurements that match with stable 

distributions [32]. 

 

TABLE 7: PARAMETER DESCRIPTION OF STABLE DISTRIBUTION 
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FIGURE 32: EFFECT OF THE CHARACTERISTIC EXPONENT PARAMETER 𝜶 ON THE 𝜶 -STABLE PDF  

   

Table 8 represents the different parameters of alpha-stable distributions, along with the range for each parameter. 

The scale parameter gamma is alternative to the noise variance, alpha represents the heaviness of the tail, beta 

controls the skewness, and finally, the location parameter is alternative to the mean value. Figure 32 (left) 

illustrates the effect of the characteristic exponent parameter 𝛼  on the 𝛼  -stable PDF, the y-axis is given in a 

logarithmic scale to highlight the heaviness of the tails for each 𝛼. Obviously, as 𝛼 decreases the tail becomes 

heavier which delineates a higher probability to receive samples far from the origin. Moreover, for the special case 

𝛼 = 2 the tail decreases exponentially and that represent the Gaussian case. Furthermore, in Figure 32 (right), 1000 

samples are generated for each distribution considered, showing the impulsiveness behaviours as 𝛼 decreases and 

the special case of when 𝛼 = 2 representing the Gaussian noise. 

  

5.3.4 MISMATCH DECODING PROBLEM   

 

                              

FIGURE 33: EFFECT OF MISMATCH DECODING, WHERE THE LINEAR RECEIVER IS USED IN AN IMPULSIVE ENVIRONMENT. 

 

Regarding the receiver design in the impulsive case, several observations can be noted. Firstly, the significant 

performance degradation obtained by the linear receiver (optimal for Gaussian noise and simple to implement) is 

due to the model mismatch as shown in the above Figure 33. Second, the construction of an optimal receiver, 

which assumes to have knowledge of the channel is complicated as various models can be considered for receiver 

design, and is difficult to know which one can be robust against environment changes. In addition, if theoretical 
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impulsive models are considered, it is difficult to implement the receiver. Moreover, if empirical models are chosen 

to offer analytical solutions, their ability to adapt to different contexts are to be proven. 

 

5.3.5 INTERFERENCE MITIGATION AND RECEIVER DESIGN 

Establishing reliable and efficient communications require to consider the impulsive nature while designing the 

receivers. The interference modelling exhibits in many situations an impulsive behaviour that can be designed by 

several approaches and different distributions.   However, designing a specific receiver for each situation is not 

efficient as the interference characteristics can highly vary in time and space. Thus, having a receiver able to cope 

with a large set of different interference models (impulsive or not) and with different degrees of impulsiveness is 

highly desired. 

 

In the following, without being exhaustive, the different receiver design approaches can be classified into four 

categories. 

• Optimal approach: in Gaussian case this is very attractive because it leads to a linear receiver, 

straightforward to implement. However, with impulsive noise, the log-likelihood ratio (LLR) becomes a 

non-linear function. Its implementation is complex and highly depends on the noise distribution either 

because of the lack of a closed-form expression such as for 𝛼- stable noise, or because it needs high 

computational burden such as for Middleton noise. Consequently, the extraction of a simple metric based 

on the noise PDF in the decoding algorithm is prevented. It is worth mentioning that under the 𝛼 -stable 

assumption the LLR can still be computed numerically, for instance, by numerical integration of the 

inverse Fourier transform of the characteristic function. 

• Noise distribution approximation: The main idea behind this approach is to find a distribution that well 

approximates the true noise plus interference PDF, with analytical expression and parameters that can be 

estimated in a simple manner.  

• Different metric measures: An alternative way to interpret detection is to consider that the likelihood 

measures the distance between all the received signals and the possible transmitted signals (e.g., Hubber 

metric [35], p-norm). 

• Direct LLR approximation: The LLR for the Gaussian noise is expressed by a linear approximation as a 

function of the received symbols (𝐿𝐿𝑅 = 2𝑦/𝜎2, where y is the received symbol and 𝜎2 represent the 

noise variance). Using only a linear scaling whose slope depends on the additive noise variance leads to 

severe performance loss as soon as noise is impulsive (e.g., due to non-cellular interference types). This 

performance loss occurs because with this linear scaling, large values in Y result into large LLR. However, 

under impulsive noise, large values in Y are more likely due to an impulsive event (meaning a less reliable 

sample) so that the LLR should be smaller. Consequently, a non-linear LLR approximation will be observed, 

the computation of such non-linear LLR is prohibitive due to the lack of density function in a closed form. 

 

So, we consider parametric approximation 𝑳𝜽 of the LLR. The family of functions 𝑳𝜽 is chosen for its simplicity and 

flexibility to represent the LLR in different channel types. To narrow down the search, we consider the estimated 

LLR 𝑳𝜽 is an odd piece-wise function. In particular, we consider both demappers 𝑳𝒂𝒃 and 𝑳𝒂𝒃𝒄 [36] as shown in 

Figure 34, that outperforms other LLR approximations as shown in [37], in terms of performance.  
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FIGURE 34:COMPARISON OF THE OPTIMAL LLR SHAPE WITH DIFFERENT APPROXIMATIONS. 

 

The LLR approximations depend on several parameters, which must be optimized to make the approximation as 

close as possible to the LLR.  Several parameter estimation methods are considered in the literature. In [38], the 

authors proposed a framework to enable online real-time parameter estimation, but they consider long block 

length regime. For short packets as in in-X Subnetworks the proposed framework suffers from significant 

performance degradation due to the lack of availability of large number of samples. To solve this problem, authors 

in [39] proposed a solution that enables unsupervised learning in the short block length regime which is suitable 

for in-X Subnetworks.  

 

In order to show the robustness of the proposed framework, authors in [32] investigated the performance in terms 

of BER simulations in different channel types, e.g., Gaussian and non-Gaussian (stable, Middleton, contaminated, 

Gaussian-mixture, etc.) and with different impulsive states (e.g., low, modern, high impulsive).  The approximation 

family has to be wide enough to encompass the linear behaviour of exponential-tail noises like the Gaussian and 

the non-linear behaviour of sub-exponential distributions of the impulsive noises. The estimation of the LLR 

approximation parameter relies on an information theory criterion that do not depend on any noise assumption. 

In [32] results show that the receiver design is efficient in a large variety of noises and that the supervised and 

unsupervised estimation allows to reach performance close to the optimal approach. Furthermore, the 

unsupervised estimation benefit from the whole received sequence to increase the useful data rate. 

 
5.3.6 NEXT STEPS AND PERSPECTIVES 

One main problem behind this proposal is that the framework needs to be extended to encompass higher order 

modulations, where such modulations will have different LLR patterns that may require different LLR 

approximation functions. In addition, the estimation complexity of the parameters can still be reduced to match 

low computational unit capabilities that may arise in the in-X subnetworks. We aim in the future to tackle these 

problems using different Anomaly detection candidates discussed in section 5.1 and 5.2 (e.g., autoencoders), in 

order to have a universal framework that can be extended to a wider range of channel types and higher order 
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modulations without suffering from mismatch problems or approximation degradations as illustrated in the Figure 

35. In brief we would like to find ubiquitous framework using AIML methods to cover  

• Wider range of LLR approximation functions. 
• Wider range of distributions. 
• Cover Higher-order Modulations. 

 
 

FIGURE 35: MAPPING BETWEEN DISTRIBUTION SPACE AND LLR APPROXIMATION FUNCTIONS SPACE. 
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6 CONCLUSIONS 

This deliverable presented an initial description of innovative strategies for optimizing RRM within the realm of 6G 

in-X subnetworks, including some preliminary results. It explored various RRM strategies tailored for distinct 

scenarios, from centralized to distributed and hybrid approaches, highlighting their potential to substantially 

enhance spectral efficiency and service reliability. Notably, the application of machine learning algorithms 

provided a robust solution for addressing RRM complexities, such as fluctuating channel conditions and pervasive 

interference. For instance, in a factory scenario with dense subnetworks installed in robots or production modules, 

the introduced DNN-based sub-band allocation method effectively met the diverse rate requirements of 

subnetworks, improving the likelihood of achieving required rates by 20% compared to existing benchmarks. In 

scenarios where some subnetworks lack access to the centralized controller, it has been demonstrated that even 

simple approaches, such as a combination of centralized and distributed methods like SISA and Greedy, can 

significantly enhance performance compared to when disconnected subnetworks randomly select a sub-band. 

The exploration of advanced methodologies for distributed power control, particularly through GNNs and MPNNs, 

has been proposed, focused on adaptability to dynamic network changes, including the addition of new 

subnetworks. The Air-MPNN framework can reduce signaling overhead with over-the-air aggregation mechanisms, 

potentially enabling applications requiring ultra-reliable low-latency. 

The goal-oriented RRM framework can mark a significant progression in merging communication and control 

operations. This approach not only enhances traditional network metrics like SINR but also integrates control 

system KPIs, such as AGV mission times, balancing control applications and network efficiency. Reinforcement 

learning is identified as a promising approach for such goal-oriented design. 

The pivotal role of advanced RRM enablers in enhancing communication within and between subnetworks 

particularly in a 3GPP context was discussed. Innovations such as the evolution of NR Sidelink provide critical 

support for integration with future 6G networks and facilitated effective communication strategies, from device-

to-device interactions to communication with the parent network. These advancements are crucial for ensuring 

robust intra-subnetwork communication and efficient coordination across subnetworks. A mechanism for 

subnetwork resource pool reservation has been proposed. The substantial impact of In-Band Emissions (IBE), 

particularly in scenarios involving frequency domain multiplexing of subnetwork traffic, was demonstrated. For 

instance, we noted significant differences in the 50th percentile values for interlaced and contiguous sub-band 

allocation, showing differences of 30.8 dB and 19.6 dB, respectively, compared to baseline idealistic cases where 

the IBE effect is not considered, especially under high load scenarios. Potential enablers to address these 

challenges were also proposed. 

Additionally, it has been discussed that the detection and mitigation of external interference are critical for 

sustaining robust communication systems, especially in environments where multiple radio technologies and 

potential malicious threats, such as jammers, coexist.  

Future research will aim to refine and evaluate these strategies and develop adaptive RRM frameworks capable of 

responding dynamically to changes in the subnetwork environment and user demands. This task seeks to establish 

a resilient, efficient, and scalable RRM infrastructure to meet the growing demands of next-generation wireless 

systems, ensuring robust, high-quality communication in the 6G era. Final results will be presented in deliverable 

D4.3, and benchmarked against the performance targets defined in the proposal. 
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