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EXECUTIVE SUMMARY

The 6G-SHINE project develops innovative solutions for managing radio resources in dense and dynamic
subnetwork environments, where multiple mobile or static subnetworks must operate reliably,
autonomously, and with minimal interference. This deliverable, D4.3, presents the final technical
achievements in the domain of radio resource management (RRM) for in-X subnetworks, addressing
critical challenges such as scalability, interference management, latency assurance, and operational
robustness under realistic deployment conditions.

Building upon the preliminary investigations of D4.1, this document advances both centralized and
distributed RRM strategies, tackles external interference challenges, and introduces enabling
technologies to strengthen intra- and inter-subnetwork communication.

Specifically, D4.3 presents:

e Centralized RRM techniques based on spatio-temporal attention-based channel prediction and
resilient deep neural network resource allocation, enabling proactive adaptation to channel
state information (CSl) delays while balancing spectral efficiency and fairness.

e Distributed and hybrid RRM solutions that rely on graph-based neural networks and
decentralized coordination mechanisms, allowing subnetworks to autonomously optimize their
resource usage even under limited or intermittent parent network connectivity.

e Goal-Oriented RRM approaches, where optimization targets shift from traditional
communication metrics (e.g., SINR, throughput) to application-specific objectives such as
minimizing robot mission time or ensuring control stability. Reinforcement learning methods,
such as Proximal Policy Optimization (PPO), are deployed to dynamically adjust mobility patterns
and resource usage based on observed network states.

e Spectrum access strategies for operation in licensed, unlicensed, or shared bands, including
semi-static access schemes, sidelink-based resource coordination, and mechanisms to mitigate
in-band emissions for increased spectral coexistence.

e External interference detection and mitigation frameworks, supporting robustness against
natural, unintentional, or malicious interference sources through interference-aware resource
allocation, jammer detection methods, and robust receiver designs.

e Adaptive receiver design techniques, leveraging likelihood ratio (LLR) approximations and
unsupervised learning to maintain reliable communication even under impulsive or non-
Gaussian interference conditions.

The developed solutions are systematically mapped to the 6G-SHINE project's defined use cases and
technical objectives, such as latency, reliability, scalability, and spectral efficiency. They are designed to
operate flexibly across a variety of deployment scenarios - centralized or decentralized - and spectrum
regimes.

Overall, this deliverable represents a significant step toward enabling ultra-reliable, scalable, and
efficient operation of 6G subnetworks in future wireless ecosystems.
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1 INTRODUCTION
1.1 Foundations and Motivation for Advanced RRM in 6G Subnetworks

This document presents the final findings on radio resource management (RRM) strategies developed
within the 6G-SHINE project, focusing on the highly dynamic and interference-sensitive environments
of in-X subnetworks. The aim is to optimize performance under two constraints: (1) meeting the
stringent requirements of latency-critical applications, and (2) coping with both internal (legitimate) and
external (uncontrolled or malicious) interference sources.

The allocation of radio parameters such as power levels, spectrum bands, time slots, and modulation
schemes becomes a highly complex task in these environments. This complexity is exacerbated by
physical constraints such as signal blockage, rapidly changing channel conditions due to mobility, and
the lack of coordination among densely coexisting subnetworks. The extreme connection density
expected in 6G, projected to be approximately 10 times greater than in 5G deployments [1], introduces
unprecedented challenges in sustaining communication quality, especially when multiple autonomous
entities operate within the same physical and spectral space.

A key characteristic of future 6G subnetworks is their ability to function in both centralized and
decentralized modes. Centralized RRM strategies can take advantage of a global view of the network to
enable predictive and harmonized resource allocation. However, such strategies are limited by practical
constraints such as CS| update delays and signalling overhead - issues that become particularly
pronounced in rapidly evolving industrial and mission-critical scenarios.

To ensure robust and scalable operation, decentralized approaches, where each subnetwork node
adapts its behaviour based on local observations, are highly valuable. This adaptability is essential in use
cases such as factory automation, autonomous vehicle swarms, and immersive consumer experiences,
where responsiveness and resilience cannot rely solely on centralized infrastructure.

Beyond managing interference among legitimate users, the critical issues of external interference -such
as electromagnetic noise, cross-technology protocol collisions, and deliberate jamming - must also be
effectively addressed. These disruptive factors can severely impact service quality and must be detected,
characterized, and mitigated in real time to ensure continuous and reliable communication.

The results presented in this deliverable provide a cohesive set of technical advancements that support
the efficiency, scalability, and adaptability targets of 6G subnetworks, across both licensed and
unlicensed spectrum regimes. They make a substantial step forward in enabling autonomous, resilient,
and intelligent RRM under the realities of future wireless environments.

1.2 Overview of Finalized RRM Contributions

Focusing on the challenges posed by dense, dynamic, and interference-prone in-X subnetwork
environments, the finalized RRM solutions developed within the 6G-SHINE project are designed to
ensure service continuity and quality under real-world constraints such as mobility-induced channel
variability, unpredictable external interference, limited signalling capacity, and stringent
latency/reliability requirements typical of mission-critical and immersive applications.
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The work builds upon the preliminary findings in Deliverable D4.1 [2] and consolidates the methods into
a comprehensive set of strategies addressing both centralized and decentralized RRM needs. The
contributions span a spectrum of enablers - from proactive channel prediction to goal-oriented control
optimization, from distributed learning to robust receiver adaptation - each designed to function under
distinct deployment and coordination models.

The reference deployment architecture, introduced in D4.1 and shown in Figure 1, remains foundational
to the structure of the developed RRM solutions. It illustrates the hierarchical and modular nature of in-
X subnetwork deployments within the 6G-SHINE framework. Each entity (EN), such as a robot, vehicle,
or production module, hosts one or more subnetworks (SN), composed of subnetwork elements (SNEs)
coordinated by a high-capability controller (HC).

At the core of the deployment is the 6G base station (6G BS), functioning as a parent network with high
processing capabilities. The 6G BS integrates compute nodes and RRM modules capable of coordinating
multiple subnetworks under its coverage. When full connectivity is available, centralized RRM decisions
can be made based on a global network view. However, in cases where SNs are disconnected from the
6G BS or low-latency coordination is infeasible, HCs are empowered to perform autonomous RRM,
relying on local observations and goal-oriented decision-making. This dual-mode operation (combining
centralized RRM via the 6G BS and decentralized RRM via local HCs) can be enabled by NR sidelink
evolution and further enhanced by mechanisms for interference mitigation, including those targeting
malicious jamming and cross-technology collisions.

[--- ]
[ ]
@ External ﬁ{fb —— Centralized RRM -
interference — _||I ” = o
& @D — " () - ®
P =
<
6G BS A /
= SNE
/\& ~—
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[ _Hc
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IQ . i 2
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Figure 1: Reference deployment architecture for the methods studied in this deliverable.
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This document is organized to highlight not only the technical solutions themselves but also the logical
dependencies between them and the broader objectives of the 6G-SHINE project. The content is
structured across six chapters: an introduction, a chapter mapping contribution to use cases and targets,
and four chapters detailing the finalized RRM contributions, each addressing a key dimension of RRM in
highly dynamic subnetwork environments. The solutions reflect a mix of centralized, distributed, and
hybrid approaches that consider system-level limitations such as CSI aging, signalling delays, lack of
central coordination, and interference from legitimate or malicious sources.

e Chapter 2 maps each contribution to the use cases defined in Deliverable D2.2 and explicitly
connects the proposed methods to the technical targets stated in the project proposal. These
targets include reliability, latency, scalability, and spectral efficiency. The use cases span
industrial, and consumer categories, with examples like Subnetwork Swarms in Factory Halls and
Indoor Immersive Education illustrating the link between proposed solutions and real-world
deployment scenarios.

e Chapter 3 introduces the core radio RRM algorithms for joint sub-band and power control,
covering both centralized and distributed paradigms. The centralized methods leverage spatio-
temporal attention-based CSI prediction to proactively counteract CSI aging and optimize
resource allocation using resilient deep neural networks. In parallel, the chapter presents
distributed strategies based on Graph Neural Networks (GNNs) and over-the-air aggregation,
enabling each subnetwork to optimize its transmit power locally with minimal coordination
overhead. These approaches are designed to support scalability and low-latency decision-
making in highly dynamic and dense deployments, where centralized control may be infeasible.
All methods are evaluated under realistic assumptions regarding CSI delays, device density, and
network dynamics, providing insights into their performance in both industrial and consumer
scenarios.

e Chapter 4 explores goal-oriented RRM, where optimization is based not only on communication-
centric KPIs like throughput or SINR but also on application-specific performance metrics such
as mission time or control error. The chapter introduces reinforcement learning (RL)-based
methods, particularly using Proximal Policy Optimization (PPO), to jointly adapt robot mobility
patterns and RRM parameters in response to network feedback. These co-design methods are
crucial for mission-critical applications where network and control performance are
interdependent.

e Chapter 5 turns attention to spectrum access and coexistence in unlicensed or mixed-band
environments. It presents methods such as semi-static channel access in sidelink, IBE-aware
resource coordination, and licensed-assisted operation to improve spectrum usage and reduce
latency in dense environments. These mechanisms enable 10x improvements in XR capacity and
support higher subnetwork densities compared to baseline sidelink access and resource
allocation schemes.

e Chapter 6 focuses on the detection and mitigation of external interference, including
uncoordinated cross-technology interferers and malicious jammers. A Gradient Descent-based
Resource Allocation (GDRA) algorithm is introduced for joint power control and sub-band
selection under probabilistic interference models. Furthermore, this chapter presents a novel

Page 13 of 99



Project: 101095738 — 6G-SHINE-HORIZON-JU-SNS-2022

receiver-side adaptation framework, including LLR approximation and adaptive demapper
selection, to maintain reliable decoding in impulsive or jammer-affected noise conditions.

A key characteristic of these solutions is their adaptability. Depending on the deployment scenario, RRM
decisions may be shaped by:

e the availability and freshness of CSI (e.g., full, delayed, or partial),

e the spectrum regime (licensed, unlicensed, or hybrid),

e the coordination mode (centralized, distributed, or hybrid),

e theinterference source (legitimate, cross-technology, or malicious),

e and the application’s QoS constraints (e.g., reliability, latency, scalability).

To ensure feasibility in practical deployment scenarios, many of the proposed methods are designed
under realistic signalling assumptions, including limited feedback, sidelink-based coordination, and
lightweight over-the-air communication protocols. Each solution is benchmarked against relevant state-
of-the-art baselines and analysed in simulation environments that mirror industrial and consumer
settings with high device density and mobility.
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2 ADDRESSING 6G-SHINE USE CASES AND TARGETS

This chapter presents a detailed mapping between the use cases defined in Deliverable D2.2: “Refined
definition of scenarios use cases and service requirements for in-X subnetworks” [3] and the technical
advancements introduced in the current deliverable. It also highlights how these contributions address
the objectives and targets of the 6G-SHINE project, with particular emphasis on objective 5: "Develop
cost-effective centralized, distributed, or hybrid radio resource management techniques (considering
both legitimate and malicious interferers) in hyper-dense dynamic subnetwork deployments."

Deliverable D2.2 outlines several in-X subnetwork use cases across different categories. Among these,
the most relevant to this deliverable is the "Subnetwork Swarms: Subnetwork Co-existence in Factory
Hall" use case from the industrial subnetwork category (Figure 2). This use case is characterized by
multiple mobile subnetworks, installed in robots, operating in proximity, leading to severe inter-
subnetwork interference.

Key challenges include:
e Real-time adaptation of radio resource management to mobility-induced CSI variations;
e Guaranteed QoS for latency- and reliability-sensitive operations;

e Distributed interference coordination with minimal signalling between SNEs and HC, and among
HCs.

To address mobility-induced CSI delay, one of the primary challenges in this scenario, a centralized
Spatio-Temporal Attention-Based Channel Prediction method has been developed. This approach
mitigates the adverse effects of outdated CSI, which otherwise leads to inefficient sub-band allocation,
suboptimal power control, and poor interference management, ultimately degrading spectral efficiency
and QoS. We consider a scenario where a central controller can perform decisions for the industrial
mobile subnetworks in the swarm. The proposed mechanism leverages dual attention across space and
time to accurately forecast future CSI. This capability allows the RRM to proactively adapt to changing
channel conditions, which is critical for time-sensitive tasks such as robot coordination and AGV routing
in factory halls.

In parallel, a Resilient DNN-based joint sub-band and power allocation scheme has been designed to
manage radio resources while maintaining fairness and QoS.

Together, these two components form a centralized RRM solutions that directly supports objective 5 by
providing scalable and intelligent RRM strategies that strike a balance between spectral efficiency and
fairness in dense, dynamic environments. They also align with broader project objectives related to
robustness and adaptability to environmental changes. As discussed in greater detail in deliverable, the
proposed solution achieves a minimum spectral efficiency (SE) that is 53% higher than the SoA without
a predictor, and 94% higher than the SoA with a predictor in scenarios with 4-sample delayed CSI. These
results indicate that the proposed solution is approaching the associated target (~2x improvement over
SoA) and substantially enhances the reliability and effectiveness of RRM in mobile subnetwork scenarios.
These results are obtained at a density of 25,000 subnetworks per km?, aligning with the scalability
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target of achieving approximately 10x higher cell density compared to typical 5G ultra-dense
deployments (~2,500 cells per km? [4],[5])

1. Sub-network A: Controlling swarm of AGVs
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plant

Figure 2: Illlustration of the Subnetwork Co-existence in Factory Hall Use Case

Furthermore, to tackle inter-subnetwork interference in case no central controller is available, a key
challenge in the "Subnetwork Swarms" use case, a distributed RRM scheme based on GNNs and over-
the-air aggregation has been introduced. This approach enables each subnetwork to optimize its
transmit power independently while preserving overall spectral efficiency and minimizing coordination
overhead. The strategy is scalable, low-overhead, and compliant with 3GPP protocols, making it suitable
for industrial deployments. Experimental evaluation through a 3GPP compliant platform shows that the
proposed framework achieves a 7% improvement in spectral efficiency compared to Equal Power
Allocation, with gains reaching 13.16% under heterogenous channel conditions.

Subnetwork swarms are also typically involved in a common mission, to be completed in a minimum
time. In other terms, each mobile robot has its own installed subnetwork for local control tasks, while
they are all moving towards a common mission. Therefore, intelligent mobility adaptation is explored to
mitigate communication degradation caused by robot dynamics and generated interference. A
reinforcement learning-based speed control algorithm adjusts robot mobility patterns in response to
SINR feedback. This mechanism maintains URLLC performance with modest latency increases at the
mobile robot mission time, achieving a 20% higher probability of meeting the same block error rate
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(BLER) compared to state-of-the-art methods. This co-design of mobility and RRM represents a
significant advancement toward adaptive, reliable and robust radio management in industrial
subnetworks.

The deliverable also addresses consumer-centric use cases from D2.2, specifically, indoor immersive
education and interactive gaming, illustrated in Figure 3 and Figure 4. These represent high-density, low-
latency environments with multiple tightly localized devices (e.g., VR headsets, sensors, consoles)
requiring consistent, real-time communication. Such deployments pose significant challenges for RRM,
particularly in unlicensed or mixed-spectrum bands, where interference, contention, and unpredictable
latency must be tightly controlled.

Although the evaluation focuses on consumer use cases, the underlying mechanisms are broadly
applicable to other use cases. The focus on consumer use cases is motivated by three key factors:

1. Sidelink as the foundation for subnetworks: Our design builds on 3GPP sidelink, and recent RAN1
work highlights growing industry interest in expanding NR sidelink to commercial use cases -
making consumer scenarios a natural reference point.

2. Practical evaluation across spectrum regimes: Consumer deployments are most likely to operate
in unlicensed bands, which are cost-free, globally harmonized, and expanding (e.g., up to 1.2
GHz in the 6 GHz band). These attributes allow for meaningful performance comparisons across
licensed and unlicensed settings.

3. Relevance to 6G standardization: As emphasized in the approved 6G work item on “Study on 6G
Scenarios and Requirements”, consumer broadband services are expected to guide core radio
design decisions, with additional adaptability to vertical needs. Thus, technical enablers
validated in consumer settings are highly likely to shape future 6G standards.

Building on the 3GPP sidelink framework introduced as a baseline in Deliverable D4.1, this deliverable
identifies key limitations of existing solutions that hinder efficient and scalable subnetwork operation in
dense deployment scenarios. These limitations pose challenges to achieving reliable, low-latency, and
high-data rate communication required for emerging consumer and industrial applications. The main
issues are:

e In-band emissions (IBE) that degrade reception quality between adjacent resource blocks due
to front-end imperfections or poor isolation. In dense deployments where multiple subnetworks
operate in close proximity and frequently reuse neighbouring frequency resources, IBE can
significantly degrade the signal-to-interference-plus-noise ratio (SINR), especially for low-power
devices. This not only limits achievable data rates but also undermines the reliability of latency-
sensitive links such as those used for XR control or sensor data exchange.

e Dynamic channel access mechanisms (e.g., LBT with random backoff) that introduce random
and often excessive access delays under high traffic conditions. These mechanisms are
mandated in unlicensed bands to ensure fair coexistence across different technologies.
However, under high traffic loads and in dense subnetwork deployments, the randomized
nature of LBT introduces unpredictable and often excessive delays. These delays are especially
problematic for applications with strict latency budgets.
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e Lack of coordination in shared spectrum, which limits scalability and reliability for intra- and
inter-subnetwork communication. In many subnetwork deployments, particularly in unlicensed
bands, there is no central authority to coordinate access among multiple subnetworks. This lack
of coordination leads to unstructured and overlapping resource usage, increasing the probability
of collisions, interference, and inefficient spectrum utilization. Intra-subnetwork coordination
and inter-subnetwork coordination are both negatively affected, limiting the overall scalability
and network reliability as the number of subnetworks grows.

To support these challenging scenarios and meet the project's scalability target of approximately 10x
higher subnetwork density than typical 5G ultra-dense deployments (i.e., ~2,500 cells per km? [4][5]),
the following RRM enhancements are introduced:

e |BE mitigation strategies, such as UE front-end enhancements and IBE-aware coordination,
increasing the number of supported subnetworks by up to 40% and 19%, respectively, in dense
unlicensed deployments.

e Semi-static channel access, adapted for sidelink operation, provides deterministic
communication and enables 10x higher XR capacity than traditional dynamic access under strict
latency constraints in shared bands.

e Opportunistic use of licensed spectrum, negotiated between a subnetwork HC and the parent
network, eliminates LBT delays and reduces self-interference, supporting up to 67% more
subnetworks compared to semi-static access in unlicensed bands.
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Figure 3: lllustration of immersive education showing some potential hierarchical subnetworks
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While inter-subnetwork interference is managed through coordinated RRM, external interference, from
unmanaged industrial devices or malicious jammers, remains a critical challenge in realistic
deployments. To address this, a robust RRM algorithm has been developed, formulated as a joint sub-
band and power allocation problem and solved using the proposed Gradient-Descent with Random
Access (GDRA) method [6].

This solution supports Objective 5 by enabling reliable subnetwork operation under unpredictable
interference conditions in both industrial and consumer indoor environments. Specifically, with external
interference set 20 dB below the subnetwork’s maximum power and active on 50% of the subbands, the
algorithm limits spectral efficiency loss to 9.7% at the median percentile, compared to 13.3% with SoA
methods - meeting the project target of <10% loss.

Furthermore, the presence of interference from any source can have severe impact on key
communication metrics such as data rate, delays, and overall error rates. The constrained nature of
subnetwork nodes, especially in terms of computation, makes this problem even more complex. It is
therefore important to address receiver design approaches that are suitable for the nature of
constrained devices of a subnetwork. LLR approximations are presented in chapter 6, that enable
constrained devices to perform better BER estimation, by means of methods of approximation of LLRs
that present a wide range of complexities. Without these mechanisms, the integral of the FFT could be
executed for polynomials of order equal or higher than 2, which is estimated as a O(N?) complexity.
Moreover, once a function and its parameters are selected, it can be used to approximate the LLR during
a validity window. This means the approximation only needs to be executed during some time instances,
which results in no computational processing during that window.
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3 RRM FOR IN-X SUBNETWORKS

In the previous deliverable [2], we provided a comprehensive overview of centralized, distributed, and
hybrid RRM strategies tailored for densely deployed and highly mobile in-X subnetworks. These
strategies addressed the diverse service requirements of industrial environments, such as Ultra-Reliable
Low Latency Communications (URLLC) and enhanced Mobile Broadband (eMBB), through techniques
ranging from heuristic sub-band allocation to deep learning-based resource optimization. Building upon
that foundation, this chapter presents advanced technical contributions that further enhance RRM
under realistic challenges, including outdated channel state information (CSl), high subnetwork density,
and external interference. We focus on two complementary directions: (i) a centralized framework that
leverages predictive CSI via a novel spatio-temporal attention-based model and resilient DNN-based
joint sub-band and power control [7],[8], and (ii) a distributed Al-driven solution based on GNNs with
over-the-air aggregation to enable low-overhead power coordination across independently operating
subnetworks. Related research has also explored distributed reinforcement learning approaches for sub-
band and power control in dense environments with stringent QoS demands, such as extended reality
over in-body subnetworks [9]. These contributions aim to improve spectral efficiency, ensure QoS, and
support the scalability and robustness required by 6G-enabled industrial systems.

3.1 Centralized RRM for in-X subnetworks
3.1.1 Spatio-Temporal Attention-Based model for RRM in outdated CSI

A fundamental challenge in RRM is the reliance on CSI, which often becomes outdated due to acquisition
and processing delays. This outdated CSI can lead to suboptimal decisions in resource allocation,
adversely affecting SE and QoS.

A major challenge is their reliance on frequent, periodic, and synchronous CSI updates, which are often
impractical in scenarios with rapidly changing channel conditions and short coherence times. Current
machine learning (ML)-based methods frequently overlook the impact of outdated CSI, leading to
significant performance degradation in high-mobility environments.

This section introduces a novel Spatio-Temporal Attention-Based model designed to address these
challenges. The model integrates attention mechanisms to accurately predict future CSl, leveraging both
spatial and temporal correlations within the network. These predictions enable proactive and informed
RRM decisions, mitigating the adverse effects of CSl delays and improving overall network performance.
This activity has been carried out in collaboration with the SNS CENTRIC project.

3.1.1.1 System Model

The proposed system model consists of multiple in-factory subnetworks (InF-Ss) deployed within an
industrial environment, each functioning as a localized wireless cell. Each subnetwork comprises an HC
and multiple LCs or SNEs, facilitating wireless connectivity and coordination of industrial tasks. At the
core of the system, a Centralized Resource Manager (CRM) is responsible for RRM and channel
prediction, ensuring efficient orchestration of network resources across the factory. The deployment is
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characterized by high mobility, dense subnetwork distribution, and localized communication, requiring
robust interference mitigation and adaptive resource allocation strategies.

The system is deployed within a factory area of L X L square meters, designed to accommodate
autonomous robots and industrial machinery. The layout supports seamless movement of SNEs while
ensuring efficient communication between subnetworks. Each subnetwork consists of a central HC that
serves as a communication hub, processing local data such as HC/SNE inputs and their controls. The HC
facilitates real-time connectivity, allowing SNEs to efficiently coordinate their operations.

The communication coverage of each HC is defined by a circular transmission range with a radius R,
ensuring that all associated SNEs remain within its connectivity zone. SNEs are positioned at distances
ranging from d,, to R, ensuring compliance with minimum proximity constraints while maintaining
reliable wireless links.

Subnetworks exhibit controlled mobility, following predefined trajectories that replicate the movement
of autonomous mobile robots (AMRs) and automated guided vehicles (AGVs) transporting materials
across the factory floor. The velocity of each subnetwork, represented as v = {vy,-:+, vy}, varies
dynamically to reflect real-time industrial operations. Movement patterns may be adjusted based on
environmental factors such as congestion, priority-based tasks, or safety constraints, ensuring adaptive
and efficient navigation.

The network topology comprises N subnetworks, denoted as V' = {1, ---, N}, operating independently
while coexisting within a shared spectrum, which is divided into K sub-bands, X = {1, ---, K}. Given the
high density of subnetworks, mutual interference presents a significant challenge. Consequently,
effective RRM techniques, including dynamic sub-band allocation and power control, are essential to
maintain spectral efficiency and mitigate interference.

The system's deployment, which is illustrated in Figure 5, aligns with real-world industrial scenarios
where each autonomous robot functions as a self-contained subnetwork. Internal communication
between LCs and SNEs is facilitated by the HC, ensuring uninterrupted task execution while navigating
the factory environment. The CRM further enhances operational efficiency by managing network-wide
resource allocation, ensuring seamless connectivity and minimizing performance degradation due to
interference.
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Figure 5: System model illustrating the deployment of in-factory subnetworks

3.1.1.2 Channel Model

The communication channel between LC/SNEs and HCs follows the 3rd Generation Partnership Project
(3GPP) specifications for in-factory environments [10]. The channel gain for a link between SNE m and
HCn at time t is given by:

mn
h’t

—_ | m
= |gt

mn

2
n mn
| % I

where:
,_T” " represents small-scale fading (Rayleigh fading).

,_Tnnaccounts for shadowing effects (modeled as a Gaussian random field) [11].

F,_T”'ndenotes path loss, which depends on the carrier frequency f.and the distance
dm nbetween nodes.

CSl is represented as a global matrix H;, which contains all channel gains for each subnetwork pair
Specifically:

h*™ represents the desired link (LC/SNEs to its associated HC).
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. h;"'" for m # n corresponds to interfering links (between a LC/SNE in subnetwork m and an
HC in subnetwork n).

Our focus is specifically on the FR3 frequency band, and the model is aligned with empirical
measurements reported in deliverable D2.3 [12]. Detailed empirical characterization and validation of
similar industrial propagation channels, including multi-frequency measurements, can also be found in
this comprehensive study.

3.1.1.3 CSI Acquisition, Reporting, and Challenges of Outdated CSI

Efficient CSl acquisition and reporting are essential for adaptive RRM in industrial wireless networks. In
each subnetwork, entities (e.g., SNEs) are configured to periodically transmits reference sequences,
such as sounding reference signals (SRS), to enable neighbouring subnetworks to measure interference
levels. The CSl is then reported to the CRM via dedicated backhaul channels, where it is used to optimize
sub-band allocation and power control.

However, several limitations in the CSI acquisition and reporting process introduce latency and
inaccuracies, leading to outdated CSI. In centralized architectures, the time required for data processing,
backhaul transmission, and channel estimation causes a temporal discrepancy between when CSl is
measured and when it is used for decision-making. The timing process is illustrated in Figure 6. In this
diagram, At denotes the interval between consecutive transmissions of sounding reference signals,
while T quantifies the overall CSI feedback delay. This mismatch reduces the effectiveness of adaptive
RRM strategies, resulting in suboptimal resource allocation and degraded SE.

Last CSl updaie

F Y

Cath 3
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Figure 6: Illustration of the CSI update process, highlighting the delay between the last CSI measurement, decision-making,
and the subsequent reconfiguration interval.

Challenges in Outdated CSI

Outdated CSl refers to channel state information that no longer accurately reflects the real-time wireless
environment. Several factors contribute to this issue, making traditional real-time RRM strategies
ineffective.

Latency in CSI Reporting

The process of CSI estimation, feedback transmission, and aggregation introduces delays at multiple
levels, including:
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Propagation and processing delays occur as the time taken for signals to travel between SNEs and HCs,
followed by computational overhead at HCs, increases latency. Additionally, backhaul bandwidth
constraints in centralized networks lead to queuing delays, slowing down CSI aggregation. Feedback
overhead is another major factor, as reporting CSI for a large number of links in dense deployments
results in excessive signalling congestion.

Rapid Channel Variability

High mobility of InF-Ss, such as autonomous mobile robots (AMRs) and automated guided vehicles
(AGVs), causes fast-changing channel conditions, shortening the coherence time of the channel. The
dynamic nature of industrial environments introduces constantly evolving interference conditions,
which further distorts CSl accuracy. As a result, the CSI available at the CRM at decision-making time is
often an outdated version of the actual channel state at that moment. The CSI available at the CRM at
decision-making time t + T is typically an outdated version of the actual channel state at time t. This
temporal discrepancy, quantified by a delay factor T, encompasses the entire acquisition, processing,
and reporting delay chain.

Impact of Outdated CSI on RRM

The timing process of CSI acquisition and updates follows a cycle, where At represents the interval
between consecutive CSI updates and 7, represents the total feedback delay, from acquisition to
decision-making.

The mismatch between real-time channel conditions and delayed CSI feedback negatively affects
multiple aspects of RRM. Sub-band allocation becomes inefficient, as frequency assignments based on
outdated CSI fail to reflect current interference conditions, leading to higher interference and
underutilized bandwidth. Similarly, power control decisions made using outdated CSI can cause power
wastage, QoS violations, and inefficient energy use. Furthermore, interference management is affected,
as the inability to accurately estimate interference levels results in poor coordination between
subnetworks, leading to increased QoS degradation.

To mitigate these negative effects, the CRM maintains a buffer of past CSI samples. This enables
temporal correlation analysis, improving prediction accuracy and allowing for better RRM decisions even
under CSI delays [13].

Strategies to Overcome the Challenges of Outdated CSI

To compensate for outdated CSI and improve RRM efficiency, several advanced techniques can be
implemented.

Predictive Channel Modelling

ML techniques can forecast future CSI based on historical patterns [14], [15]. Spatio-temporal deep

learning frameworks, such as Long Short-Term Memory (LSTM)-based predictors, leverage both spatial
correlations between subnetworks and temporal dependencies in CSI evolution [16].

Optimized CSI Feedback Mechanisms
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Reducing feedback overhead while maintaining accuracy is essential for real-time RRM. This can be
achieved through compressed CSI feedback, which transmits only the most relevant CSI components,
and hybrid CSI estimation, which combines real-time CSI with historical data trends to improve
estimation accuracy. Adaptive feedback scheduling, where feedback intervals dynamically adjust based
on network conditions, can further optimize CSI reporting.

Leveraging Historical CSI for Enhanced Estimation

The CRM can store and analyse past CSI data to develop better resource allocation strategies. Advanced
deep learning models, such as transformers and LSTMs, can process historical CSI data to make reliable
predictions, reducing the dependency on real-time feedback.

Channel Prediction for CSI Estimation

Predicting future CSl is a time-series forecasting problem, requiring models that capture both short-term
fluctuations and long-term trends. Traditional model-based approaches, such as autoregressive models
and stochastic processes, struggle to handle the dynamic nature of industrial subnetworks [17].

In contrast, machine learning-based predictors offer a more adaptable and accurate solution. These
models identify spatial correlations among subnetworks to understand interference relationships,
model temporal dependencies in CSI evolution, and predict CSI over a delay horizon to compensate for
reporting delays.

As depicted in Figure 7, the framework processes historical, delayed CSI data as input to determine
optimal RRM strategies. By replacing outdated CSI with predictive CSI, RRM decisions become more
accurate, spectral efficiency improves, and QoS adherence is maintained, ensuring reliable and high-
performance wireless communication in 6G-enabled industrial environments.

Predicted

Delayed CSI
4% Predictor ’ib
He rytye.., Hy i

t+r

Figure 7: Overall framework of the proposed solution, utilizing delayed CSI as input to generate predicted CSI as output.

3.1.1.4 Dual Attention-Based Channel Prediction

Channel samples exhibit complex spatio-temporal correlations, particularly in dynamic industrial
environments where the mobility of InF-Ss and fluctuating interference patterns cause rapid variations
in the channel state. The dense deployment of subnetworks further introduces strong spatial
dependencies, as neighbouring SNEs often experience similar interference and fading effects. These
combined factors make channel prediction a challenging task, requiring models that can effectively
capture both temporal dependencies and spatial correlations [18], [19].
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Traditional time-series models, such as recurrent neural networks (RNNs), have been widely applied to
channel prediction tasks. However, standard RNNs suffer from the vanishing gradient problem when
handling long-term dependencies. LSTM networks mitigate this issue by introducing memory cells and
gating mechanisms, enabling them to retain long-term dependencies. LSTMs have demonstrated
superior performance in various applications, including language modelling, time-series forecasting, and
industrial sensor analysis [20],[21],[22].

To improve channel prediction in dynamic environments, an LSTM-based encoder-decoder architecture
is employed, enhanced with dual attention mechanisms. These mechanisms prioritize spatially and
temporally significant features, allowing the model to capture critical patterns in channel evolution. The
encoder extracts relevant features from historical CSI, while the decoder generates accurate future CSI
predictions by leveraging attention-weighted hidden states.

LSTM-Based Encoder-Decoder Architecture

The core of the predictive model is an LSTM network structured as an encoder-decoder framework. Each
CSI matrix, denoted as H,, represents the channel state at time t. Before processing, it is flattened into
a one-dimensional vector:

vec(H,) = [hl'l, ooy R, ...,hItV'N] € RV*x1

This transformation ensures compatibility with the LSTM input format.

The LSTM unit processes the CSI vector x; along with its previous hidden state z;_;and memory cell
state m;_;. These inputs determine which information is retained, updated, or discarded. The forget
gate selectively removes irrelevant past information, while the update gate integrates new relevant
information into the memory cell. The output gate regulates the final contribution of the memory cell
to the hidden state. This structure enables the LSTM to capture temporal dependencies while avoiding
vanishing gradients.

The LSTM encoder processes the historical CSI sequence {H;_r,1, ..., H;} and encodes it into a set of
hidden states, which are then passed to the decoder. The decoder, in turn, predicts the future CSI based
on these hidden states and previously generated outputs.

While LSTMs effectively model long-term dependencies, they treat all input features uniformly, which
limits their ability to focus on critical time steps or spatially significant regions in the input sequence. To
overcome this, dual attention mechanisms - spatial and temporal attention - are introduced within the
encoder-decoder framework.

Spatial and Temporal Attention Mechanisms

Figure 8 illustrates the dual attention-based encoder-decoder structure, consisting of an encoder and a
decoder. Attention mechanisms enhance the model by dynamically prioritizing important features
within the input sequence. Spatial attention focuses on selecting the most relevant channel variables
from each CSI matrix, while temporal attention identifies the most informative time steps in historical
data.
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The spatial attention mechanism assigns varying importance to different CSI components based on their
contribution to channel prediction. The attention weights are computed using:

&t = Vi*tanh(Ws,_; + Uvec(H,)' + bi*), 1<i<N?

where s,_; is the decoder’s previous hidden state, and V4, W32, U*, and b3 are trainable parameters.

The final spatial attention-weighted input is obtained as:

Vec(ﬁt) =a; O vec(H,).

where o; = [a}, ...,a’t"z] represents the spatial attention weights. An LSTM network is subsequently
employed to process the attention-weighted inputs and extract latent features, denoted as

{Ze-r41 0 2t}

Once the encoder has extracted features from the spatially weighted input, the temporal attention
mechanism prioritizes significant time steps for predicting the next CSI value. The temporal attention
weights are computed as:

Bt =VAtanh(Wihs,_y + Uz, 14, + b[),

ePt
= =aq, 1 S l S T,
25=1eﬁt

l

Bt
where z,_7,; represents the encoder's hidden states at previous time steps, s;_4 is the output of the
t — 1-th unit of the LSTM decoder, and V4, WkTA, U,IA, and b,I are parameters to be learned. The
normalized value Blt guantifies the relevance of the [-th hidden state to the current decoding step. The
weighted sum of the encoder's hidden states forms the context vector:

C = ZzT:1 Zi-T+1 ,35-

By integrating both spatial and temporal attention, the model ensures that only the most relevant
features contribute to the prediction, significantly improving CSI forecasting accuracy in dynamic
industrial environments.
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Figure 8: Structure of the dual attention-based LSTM encoder-decoder, integrating spatial and temporal attention mechanisms
for enhanced channel prediction.

Prediction and Model Optimization

The decoder module generates the predicted CSI using the LSTM-based hidden state and the temporal
attention-weighted context vector. The final prediction is computed as:

ﬁt+1 = Wfst + bf,

where W; and by are trainable parameters.
The prediction model is trained using the mean squared error (MSE) loss function:

MSE = Ep,{|H — H|?},

where H and H represent the actual and predicted CSI, respectively, and Bp is the batch size.
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To ensure efficient optimization, the Adaptive Moment Estimation (ADAM) algorithm is used. ADAM
combines momentum and RMSprop techniques, facilitating faster convergence and robust parameter
updates, making it particularly suitable for complex models such as the dual attention-based encoder-
decoder.

The proposed dual attention-based LSTM encoder-decoder effectively captures both spatial correlations
and temporal dependencies in CSI evolution, enhancing channel prediction in dynamic factory
environments. By prioritizing the most relevant features and time steps, the model mitigates the impact
of outdated CSI and significantly improves the accuracy of resource management strategies in dense
industrial networks.

3.1.2 Resilient DNN for Joint Sub-Band and Power Control in Mobile In-FS

In this section we introduce the problem formulation and then architecture of the proposed ML model
and the associated learning strategy for efficient resource allocation. The DNN framework is specifically
designed to address sub-band allocation and power control in an integrated manner while adhering to
resource allocation constraints.

3.1.2.1 Problem Formulation

As illustrated in Figure 5, this study focuses on RRM for uplink transmissions, where SNEs communicate
with their respective HCs within each subnetwork. The system assumes the available spectrum to be
divided into sub-bands, denoted by K = {1, ---, K}, shared among all SNEs. Each subnetwork is assumed
to serve a single SNE, with its transmission fully utilizing the assigned sub-band.

The primary objective is to develop a resource allocation strategy that jointly optimizes sub-band
assignment and power control to maximize the average SE across all subnetworks, while ensuring that
each subnetwork meets a minimum SE requirement, SE,;,. Sub-band allocation is denoted by a¥, and
power levels are represented by p,,. These variables are adjusted based on the estimated CSI, ITt The
indicator ak € {0,1} specifies whether subnetwork n transmits on sub-band k, (aX = 1 for active
transmission). Each subnetwork is constrained to use a single sub-band, expressed as Z’,ﬁzl ak =1.The
allocated sub-band is determined by converting the one-hot vector a,, = [a}, ..., aX] into a categorical
value a, = YX_, k- ak. Transmit power p,, is modeled as a continuous variable, constrained by P4
offering greater flexibility compared to discrete power levels.

nn
he a#pn

ern,n"'ZmeN\{n} h;n'nafnpm

SEX = log,(1 +

),

where h{"" represents the desired channel link for subnetwork n, and yfn,n is the receiver noise power,
calculated as:

—174+NF+10log;o (W)
10
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where W, denotes the sub-band bandwidth (in Hz), and NF represents the receiver noise figure (in dB).

The joint optimization problem for sub-band allocation and power control is formulated as:

s.t. ZkEK SEE = SEmin' vn eN

ak €{0,1}, VneN,Vk €K

2a,’§=1, VneN
kex

0<p,<Ppox, VREN

This mixed-integer nonlinear programming (MINLP) problem is computationally challenging due to its
non-convex nature. Conventional methods, such as branch-and-bound algorithms, dynamic
programming, and convex relaxation techniques, can be employed to solve such problems; however,
these approaches often suffer from prohibitive computational complexity, particularly in large-scale and
dynamic scenarios. To address these challenges, deep learning techniques are employed to approximate
the optimal mapping function, leveraging their universal approximation capabilities [23],[24].

3.1.2.2 Structure of the DNN Model
The detailed architecture of the developed deep neural network (DNN) is illustrated clearly in Figure 9
This architecture comprises two separate yet interconnected modules, each integrating M fundamental

computational units designed explicitly for extracting and learning complex relationships from the input
features and subsequently generating resource allocation decisions.
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Figure 9: Structure of the proposed DNN-based RRM framework, showing interconnected modules for sub-band allocation and
power control, supported by preprocessing and loss optimization components.

Each fundamental computational unit is structured around four essential layers. Initially, a fully
connected (FC) layer captures high-dimensional feature representations from the input data, creating a
rich feature set for subsequent processing. The next stage involves a batch normalization (BN) layer,
strategically positioned to stabilize the intermediate outputs. This stabilization significantly accelerates
the training convergence process by reducing internal covariate shifts and improving gradient flow.

Subsequently, the activation layer introduces non-linear transformations critical for the model’s ability
to capture intricate patterns within the input data. Depending on the position of the unit within the
network, this layer leverages either an Exponential Linear Unit (ELU) or a Rectified Linear Unit (ReLU).
Specifically, ELU is utilized within initial computational units to handle potential negative inputs
effectively, thereby ensuring smoother gradient propagation and stable updates during early training
phases. Conversely, deeper layers employ ReLU to focus exclusively on positive activations, simplifying
computational complexity while preserving overall model performance and accuracy.

The final component of each unit is the dropout layer, a vital mechanism to combat overfitting. This
layer randomly deactivates neurons during the training phase, thereby enhancing the model’s
generalization capability and ensuring robustness when applied to unseen data.

Each fundamental computational unit incorporates My hidden nodes, a configuration that allows the
network to intricately model subtle and complex data relationships. Before processing, the input—
consisting of an estimated channel gain matrix H—undergoes a transformation to the decibel (dB) scale.
This conversion ensures numerical stability and uniform scaling across inputs. Following this
transformation, the matrix is normalized to achieve a zero mean and unit variance, thus preventing
potential biases or skewed distributions in the data. The normalized channel gain matrix, initially
structured as an N X N matrix, is flattened into a one-dimensional feature vector of lengthN?, aligning
with the approach recommended in prior literature [23].
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The overall DNN architecture is segmented into two modules that share a similar structural foundation
but are individually tailored for specific resource allocation functions. The first module addresses sub-
band allocation, while the second module focuses explicitly on power control, collectively ensuring a
comprehensive and efficient handling of the resource allocation tasks.

Sub-Band Allocation Module

The sub-band allocation module outputs a total of NK values, initially structured into an N X K matrix.
To meet the sub-band allocation constraints, each subnetwork's outputs are individually processed
through a dedicated softmax function. This ensures each subnetwork's sub-band allocation probabilities
collectively sum to unity, meeting the probabilistic constraints necessary for meaningful allocations.

During inference, the allocation decision for subnetwork n, represented as a,, is finalized by selecting
the sub-band with the maximum predicted probability: a,, = arg m’?x ak, thus adhering strictly to the

discrete constraints articulated in problem formulation. However, during the training phase, outputs
remain continuous probabilities a,,” for all sub-bands. To effectively bridge the gap between continuous
probability outputs during training and discrete allocation decisions during inference, a soft binarization
approach with an adjustable sharpness parameter, §, is introduced. By gradually tuning this parameter,
the model progressively transitions from a continuous output regime during training towards a more
discrete, decision-focused regime during inference, refining the predictive accuracy and robustness of
the allocations over successive training iterations.

Power Control Module

The second module of the DNN architecture is dedicated to predicting optimal power levels for each
subnetwork. After passing through the final fully connected layer, the outputs are further refined via a
sigmoid activation function. This sigmoid transformation ensures that the predicted power levels are
confined within a continuous range from 0 to 1, facilitating smooth and differentiable outputs suitable
for gradient-based optimization. The resulting normalized predictions are then scaled by the maximum
permissible transmission power P4, directly ensuring compliance with the power control constraints
detailed in problem formulation. The implementation of this sigmoid-based output mechanism
significantly aids in the optimization process, enabling precise and efficient adjustments to the
subnetwork power levels in response to varying channel conditions and operational requirements.

Loss Function and Training Methodology for the DNN Model

The developed DNN model employs an unsupervised learning strategy, which circumvents the necessity
for labelled datasets that provide precomputed optimal solutions. Instead, the network directly targets
the optimization of the resource allocation problem using a custom-designed loss function. This
approach significantly simplifies the data preparation process, enhancing computational efficiency and
making the model particularly suitable for real-time deployment scenarios. The model is trained offline,
ensuring that computationally intensive optimization steps are completed beforehand, thereby
substantially reducing inference complexity compared to traditional iterative optimization methods.
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The formulated loss function strategically addresses dual optimization goals: maximizing the average SE
across all subnetworks while rigorously enforcing compliance with QoS constraints. The formal

expression for the loss function is given by: L = — %ZneN SEY + Ac(SEpin} — SEW

where A serves as a critical weighting parameter, carefully balancing the trade-off between achieving
high overall SE performance and satisfying stringent QoS constraints.

In this context, SE}Y denotes the weighted spectral efficiency for subnetwork n and is calculated as:
SEY = Yes ar SEY .

The loss function inherently pursues two intertwined objectives. The primary term targets the
maximization of the weighted SE across all subnetworks, steering the model towards optimal resource
utilization outcomes. Concurrently, the secondary term introduces a structured penalty to address QoS
deviations effectively. Specifically, the penalty leverages a sigmoid function o, offering a smooth,
continuous, and differentiable penalty mechanism whenever a subnetwork's spectral efficiency drops
below the predefined minimum threshold, SE,;,,. The differentiability and smoothness of this penalty
component are particularly advantageous for gradient-based training methods, as they enable stable
gradient updates and focus optimization on substantial QoS violations without introducing abrupt shifts
in training behavior.

The adjustable parameter A provides the necessary flexibility to tailor model behavior to specific
operational priorities and network conditions. Lower values of A direct optimization efforts
predominantly toward improving the overall network efficiency, whereas higher values strongly enforce
compliance with QoS constraints. Such flexibility enables adaptive model performance across varying
scenarios and requirements.

Addressing the challenge posed by the difference between continuous outputs during training and
discrete decisions during inference, the training methodology incorporates a soft binarization approach.
This method uses a parameterized softmax function described as follows:

ex’,ﬁ/&
kY _
% (xn) B YK, exr/8

where xX represents the input logits to the softmax layer, and § controls the sharpness of the probability
distribution. Initially, § is set to a large value, ensuring smoother and broader distributions, thus
enhancing gradient stability and network exploration during early training stages. Subsequently, 6\delta
is progressively decreased using a systematic adaptive scaling schedule:

6(171) — é‘(m—l) .'y’ lf m = ] 'Iupdate' ] € Z+

where y denotes the scaling factor, Iyp4ate defines the interval at which updates occur, and mm signifies
the current training epoch. This adaptive reduction approach smoothly transitions the model's outputs
from continuous probabilities to sharply defined discrete allocations, facilitating a seamless shift from
broad exploration of resource allocation possibilities to precise exploitation of optimal solutions.

Si The experimental validation of the proposed scheme was conducted using high-performance cloud
computing infrastructure, leveraging an AMD EPYC-Rome processor with 40 cores operating at 2.9 GHz,
complemented by an NVIDIA A40 GPU and supported by 64 GB of RAM. This robust computational
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environment ensured efficient training and evaluation, providing accurate and timely assessments of
the proposed model's capabilities.

The channel prediction performance of the proposed method was benchmarked against a conventional
LSTM model with identical configuration parameters. This direct comparison highlights the effectiveness
and added value of integrating a dual attention mechanism within an encoder-decoder architecture,
specifically designed to capture intricate spatial and temporal dependencies within the channel data.
Such a mechanism significantly enhances prediction accuracy compared to standard recurrent neural
network approaches.

For evaluating the RRM component, the proposed scheme was rigorously benchmarked against
established SoA methods. Specifically, the comparative analysis included the Sequential Iterative Sub-
band Allocation (SISA) algorithm paired with the Weighted Minimum Mean Square Error (WMMSE)
technique. The SISA algorithm, as detailed in [25], employs an iterative, centralized approach explicitly
aimed at minimizing interference during sub-band allocation. Subsequently, the WMMSE method,
referenced in [26], is applied to optimize power allocation decisions based on the sub-band assignments
provided by SISA. This combination represents a strong, optimization-driven baseline suitable for
assessing the efficacy of our proposed scheme.

Moreover, the robustness and general applicability of the proposed RRM strategy were evaluated under
highly dynamic and less structured scenarios by introducing a random allocation baseline. In this
scenario, sub-bands were randomly assigned from the available K sub-bands for each subnetwork, and
the transmission power levels were uniformly sampled within the allowed range [0 P,,4,]. This random
assignment approach provided a practical lower-bound performance measure, facilitating a clearer
understanding of the incremental improvements offered by the proposed model and baseline methods
under challenging, interference-prone conditions.

Overall, the selected evaluation framework provides a comprehensive assessment, effectively
demonstrating the proposed scheme’s superior capabilities in both channel prediction accuracy and
RRM efficiency. Results consistently indicated that the proposed methodology significantly
outperformed traditional optimization methods and random strategies, particularly regarding
maintaining high spectral efficiency and reliably meeting QoS requirements in dynamically evolving
network conditions.

3.1.3 Simulation Results and Analysis for proposed Centralized RRM

3.1.3.1 Simulation Setup

The simulations were performed in a factory environment, modelled as a high-density deployment
scenario within a confined area of 20x20m area (i.e., 400 m?2). This corresponds to a density of
25,000 subnetworks per square kilometre, reflecting realistic industrial conditions. A total of 10 mobile
subnetworks were simulated, each moving at randomly assigned velocities within the range of 0-10 m/s
along parallel lanes. These lanes were equally spaced, representing controlled yet dynamic industrial
movements. Each InF-S was modelled with a circular coverage radius of 1 m, ensuring localized
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communication. Additionally, the minimum separation between HCs and SNEs within each subnetwork
was constrained to 0.8 m, consistent with practical industrial deployments.

The wireless channel characteristics followed the detailed description in Section 3.1.1.2, reflecting
typical dense clutter and low base station heights inherent to industrial factory scenarios (InF scenarios)
as per standard [10]. Our simulation environment, particularly in the FR3 frequency band (around 10
GHz), aligns closely with empirical measurements conducted within the 6G-SHINE project’s Work
Package 2 [4]. Clutter elements were uniformly distributed with a size of 1 m and density of 70% across
the simulated area. Shadowing effects were simulated with a standard deviation of 4dB and a
decorrelation distance of 5m, ensuring accurate representation of spatially correlated signal
impairments. The number of sub-bands was limited to K = 3, compelling the subnetworks to efficiently
share these resources. The radio propagation parameters included a carrier frequency f. = 10 GHz,
channel bandwidth per sub-band W), = 40 MHz, maximum transmit power P,,;, = 0dB, and a noise
figure (NF) of 5dB. These parameters align closely with typical high-frequency industrial wireless
network configurations. For consistency, the sounding reference signal period and the reconfiguration
interval for RRM were both set to At = 100 ms. The buffer length for past CSl samples was fixed at T =
5 time steps, and the prediction horizon 1, representing the maximum allowable delay, was set to 4-
time steps. The predictor employed a Long Short-Term Memory (LSTM)-based architecture consisting of
Listm = 2 hidden layers, each with zi sty = 512 neurons for both the encoder and decoder. The
predictor training used a learning rate of ap = 10™%, batch size of Bp = 1024, and was trained for Ep =
500 epochs to ensure robust predictive performance.

The RRM model was designed using M;; = 4 basic units, each containing Hy = 512 hidden nodes. The
training parameters included a learning rate ag = 107>, dropout rate r; = 0.1, and batch size B =
1024. The weighting parameter A was set at 20, effectively balancing SE maximization and minimum
QoS adherence. The minimum SE constraint SE,;, was set at 4, emphasizing stringent QoS demands
characteristic such as real-time industrial control, high-data-rate sensor aggregation, and machine-to-
machine communication tasks [3]. The RRM model training spanned Ex = 150 epochs to ensure robust
convergence and adaptability.

The dataset for evaluation was generated by reconstructing the environment 10,000 times, with each
subnetwork moving for 10 s per simulation instance. A sliding window approach extracted samples from
all HC-SNE pairs, yielding a training dataset with 900,000 samples and a test dataset comprising 100,000
samples.

The comprehensive list of simulation parameters is summarized clearly in Table 1, categorizing
parameters related to system deployment, predictor model configuration, RRM model design, and
dataset preparation to facilitate clarity and reproducibility.

Table 1: Simulation parameters for centralized RRM

Parameter ‘ Value

System Deployment and Channel Model
Factory area, L X L ‘ 20x20 m?
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Number of subnetworks, N 10
Subnetwork radius, R 1m
Minimum distance between HC and SNE 0.8m
Clutter density 70%
Clutter size 1m
Shadowing standard deviation, g, 4 dB
De-correlation distance, d, 5m
Number of sub-bands, K 3
Sub-band bandwidth, W, 40 MHz
Carrier frequency, f 10 GHz
Maximum transmit power, P, 0 dBm
Noise figure, NF 5dB
Sounding reference signal period, At 100 ms
CSI buffer length, T 5
Prediction length (delay), T 4
Predictor Model Hyperparameters
Number of hidden layers, Listm 2
Number of hidden neurons, z;stm 512
Learning rate, ap 107*
Batch size, Bp 1024
Training epochs, Ep 500
RRM Model Hyperparameters
Basic units, My 4
Hidden nodes per unit, Hy 512
Learning rate, ag 1075
Dropout rate, 14 0.1
Batch size, By 1024
Training epochs, Ex 150
Weighting parameter, A 20
Minimum SE, SE,in 4
Initial Softmax tunable parameter, initiar | 1
Scaling factor, y 0.9
Interval between updates, L;pqqte 10
Dataset Parameters
Reconstructed environments 10,000
Training samples 900,000
Testing samples 100,000
Simulation duration per reconstruction 10s
Sliding window size T+1t=9
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3.1.3.2 Comparison of RRM Approaches

In this section, we evaluate the performance of the proposed DNN-based resource management model
by comparing it against state-of-the-art (SoA) benchmark algorithms.

Initially, we consider an ideal scenario without delay, assuming instantaneous availability of CSI to the
CRM. The primary objective here is to evaluate how effectively the proposed model maximizes SE while
complying with the minimum SE constraints.

Figure 10 depicts the progression of two key metrics over the training epochs of the RRM model: the
probability of minimum SE violations (interpreted as outage probability) and the average SE across all
subnetworks. The figure clearly illustrates the model's convergence behaviour and its capability to
balance individual QoS constraints against overall system efficiency. Initially, the probability of SE
violations is high due to the model's limited initial optimization knowledge. However, as training
progresses, a significant reduction in violations occurs, indicating improved capability in satisfying QoS
constraints. Concurrently, the average SE consistently increases, reflecting enhanced resource
utilization. The stabilization of both metrics toward the end of training demonstrates the robustness and
efficacy of the designed loss function in achieving an optimal and fair resource allocation for Industrial
systems.
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Figure 10: Evolution of the probability of minimum SE violation and average SE across all subnetworks as a function of the
RRM training epochs, illustrating the model's convergence behaviour and its ability to balance QoS constraints with system

efficiency.

To assess the effectiveness of the model in producing accurate binary decisions post-training, Figure 11
presents the cumulative distribution function (CDF) of the binarization error, defined mathematically as
E[l a,, — round(a,) ], for each InF-S. The CDF is plotted on a logarithmic scale for clarity and illustrates
that the binarization errors remain exceptionally small across the evaluated scenarios. Given that the
maximum theoretical binarization error is 0.5, the observed results indicate that the proposed DNN
model reliably produces discrete, binary outputs, thus fully complying with practical resource allocation
constraints.
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Figure 11: CDF of the binarization error for the RRM model, highlighting the effectiveness of the proposed framework in
generating binary outputs for sub-band allocation with minimal deviation.

Furthermore, Figure 12 and Figure 13 illustrate the CDFs of average and individual SE values across all
subnetworks, comparing the proposed DNN-based resource management method to the benchmark
approach combining SISA and WMMSE under varying CSl delays (t = 0, 1, 2, 3, 4). Results indicate that
increasing delays negatively impact the performance of both the proposed and benchmark methods due
to reliance on outdated CSI for decision-making. Nevertheless, the proposed DNN-based model
consistently demonstrates superior robustness and adaptability compared to the SISA-WMMSE
approach, exhibiting notably less degradation as delay increases. Specifically, transitioning from zero
delay (T = 0) to a 4-sample delay (T = 4) results in a median SE reduction of approximately 0.1 bps/Hz
for the proposed method compared to approximately 0.2 bps for SISA-WMMSE.

Additionally, Figure 13, plotted on a logarithmic scale to highlight performance at lower percentiles,
provides further insights into individual SE distributions under significant delays (t = 4). Notably, the
minimum SE attained by the SISA-WMMSE benchmark decreases sharply to below 3 bps/Hz, whereas
the proposed DNN-based approach maintains a significantly higher minimum SE of approximately
4.5 bps/Hz, representing a 50% improvement. This finding underscores the superior fairness and
robustness of the DNN-based method, ensuring that even the most disadvantaged subnetworks
maintain acceptable SE levels despite the challenges introduced by delays.

Overall, the analysis presented in Figure 12 and Figure 13 demonstrates clearly that the proposed DNN-
based resource management model not only achieves higher average SE but also substantially improves
fairness and robustness compared to the benchmark SISA-WMMSE method. These outcomes emphasize
the model’s suitability for realistic industrial scenarios, highlighting its ability to effectively mitigate the
negative impact of CSI delays. The next subsection will explore how predictive capabilities further
enhance performance under delay-induced impairments.
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Figure 12: CDF of the average SE across all subnetworks, comparing the proposed DNN-based RRM and the benchmark under
varying delay conditions
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Figure 13: CDF of the individual SE across all subnetworks, comparing the proposed DNN-based RRM and the benchmark
under varying delay conditions.

3.1.3.3 Comparison Results for Different CSI Prediction Methods

The primary aim of integrating channel predictors within this study is to enhance resource management
by reducing the adverse effects caused by delays. To offer a comprehensive evaluation, Figure 14
compares the MSE loss trends during the training and validation phases for both the attention-enhanced
LSTM and the standard LSTM predictors. These results provide valuable insights into the performance
characteristics of the two predictive models. Initially, the dual-attention LSTM model exhibits faster
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convergence in both training and validation losses compared to the standard LSTM, highlighting its
superior learning capability during early training stages.
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Figure 14: Training and validation loss trends for the dual attention LSTM and standard LSTM predictors.

Throughout the training period, the dual-attention LSTM consistently achieves lower loss values in both
training and validation sets, demonstrating its enhanced effectiveness in capturing complex channel
dynamics. Additionally, the narrow gap between training and validation losses indicates that the dual-
attention LSTM model is less prone to overfitting, highlighting its robustness and generalizability. This
superior performance is primarily attributed to the dual-attention mechanism's ability to effectively
capture both spatial and temporal channel dependencies. Furthermore, the smoother loss curves
observed for the dual-attention LSTM suggest a more stable and reliable training process, compared to
the noticeable fluctuations associated with the standard LSTM.

To evaluate the effectiveness of the proposed prediction models in reducing delay-related performance
degradation, we conducted a detailed analysis of SE across subnetworks. Figure 15 presents the CDF of
the average SE for all subnetworks, while Figure 16 focuses on individual SE values under the maximum
delay scenario (T = 4). The evaluations consider the DNN-based resource management framework and
include baseline scenarios such as the ideal (no delay) condition and the sample-and-hold strategy,
where the most recent CSI data is reused.
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Figure 15: CDF of the average SE across all subnetworks for DNN-based RRM with a T = 4-sample delay, comparing sample-
and-hold, Attention-LSTM, and LSTM predictors.
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Figure 16: CDF of the SE for all subnetworks for DNN-based RRM with a T = 4-sample delay, comparing sample-and-hold,
Attention-LSTM, and LSTM predictors.

Figure 15 clearly demonstrates the substantial improvements achieved through the application of
machine learning-based predictors, particularly the attention-enhanced LSTM. Under significant delay
conditions (T = 4), the attention-enhanced LSTM consistently surpasses the standard LSTM in terms of
average SE. Specifically, the CDF curve for the attention-based LSTM predictor is notably steeper and
shifted towards higher SE values, approaching closely the ideal (no-delay) performance benchmark. This
finding underlines its superior predictive capabilities, significantly reducing the negative impacts
associated with outdated channel information.
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Extending this analysis to individual SE distributions, Figure 16 further illustrates the substantial
advantages of the attention-enhanced LSTM predictor. Not only does it deliver improved average SE,
but it also ensures more balanced and equitable resource allocation among subnetworks. For instance,
while the minimum SE with the sample-and-hold approach is approximately 4.5 bps, the attention-
enhanced LSTM predictor significantly enhances this metric to approximately 5.7 bps/Hz. This
improvement of over 25% underscores the predictor’s effectiveness in mitigating delay-induced
performance reductions, thus enhancing fairness by significantly reducing the occurrence of
subnetworks experiencing low SE values due to delayed CSI.

These findings strongly validate the effectiveness of the attention-enhanced LSTM predictor in
addressing delay-induced impairments. The observed improvements in both average and individual SE
clearly demonstrate the advantage of incorporating advanced spatio-temporal attention mechanisms
within the prediction framework, enabling efficient and fair resource allocation in delay-sensitive
wireless communication systems. In typical deployments, the CSI reporting delay from nodes to the
centralized RRM unit is significantly shorter than the 400 ms (4 samples x 100 ms) considered here.
Therefore, the delay conditions examined in this work represent a conservative scenario, further
underscoring the robustness of the proposed predictor.

3.2 Distributed RRM for in-X subnetworks

Solutions such as those presented in the previous section can only be applied in case subnetworks are
able to communicate with the parent network and the central controller, which can perform centralized
decision. Here, we are presenting a solution tailored instead to distributed deployments, where
decisions are taken individually at each subnetwork.

In spectrum-constrained environments, wireless networks and subnetworks must share the same
frequency bands, leading to interference between communication links. This is a key challenge
addressed by the Subnetwork Co-existence in Factory Hall use case, where multiple subnetworks are
deployed in closed proximity within a shared industrial space, requiring careful coordination to manage
mutual interference.

Effective RRM is essential to mitigate this issue. Building upon the framework described in deliverable
D4.1, which proposed a distributed Al-driven solution based on GNNs and over the air message passing,
this section presents validation results obtained through simulations. This distributed power control
solution employs over-the-air aggregation of pilot signals, enabling subnetworks to indirectly exchange
interference-related information. This method dynamically optimizes transmission power allocation,
minimizing inter-subnetwork interference while ensuring reliable communication. The solution has been
integrated and tested within a 3GPP-compliant simulation environment.
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3.2.1 System Model

3.2.1.1 General Architecture

Figure 17 presents a high-level depiction of the proposed RRM framework, where subnetworks (labelled
as SN1 and SN2) operate in overlapping frequency bands, as they would if they had to coexist in a Factory
Hall. Each subnetwork includes a HC node embedded with an Al/ML model within its radio protocol stack
to manage RRM procedures. These HC nodes broadcast Channel State Information Reference Signals
(CSI-RS) and information generated by the Al/ML model, namely Neural Network Information (NNI), to
the whole network. The respective SNEs use the CSI-RS for channel measurements, while NNI is part of
the over-the-air neural network computation. Using the channel feedback received from the SNEs, the
Al/ML model computes the optimal transmission power for data communication towards the SNEs. The
HC nodes dynamically adjust power control decisions by continuously processing updated CSI and the
exchanged NNI to minimize interference across neighbouring subnetworks, thereby improving
communication reliability and spectral efficiency.

As NNI is a scalar value presented in next section, we contained it in the CSI-RS by mapping it to its
transmit power. Also, we configured all schedulers running on the HC nodes to broadcast the signal on
the same resource elements on the resource grid. This results in over-the-air aggregation of all NNIs
since they are transmitted simultaneously, and all SNEs receive the aggregated information. This
implementation does not add any overhead or latency to the communication and allows the dynamic
addition and removal of subnetworks. However, this technique requires a high level of synchronization
in the time and frequency domain between the HC nodes because any misalighment can cause
interference and corrupted NNI exchange. Additionally, it requires that each CSI-RS is orthogonal with
each other for proper over-the-air message aggregation.
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Figure 17: Al/ML RMM through power control
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3.2.1.2 Al/ML Model for Distributed RRM

To implement a targeted RRM solution, a distributed power control mechanism for interference
management was developed using the Air Message Passing Recurrent Neural Network (Air-MPRNN)
paradigm, as introduced in [27]. This approach is built on a GNN-based Message Passing Neural Network
(MPNN), which has been theoretically proven to enable efficient distributed power control. The MPNN
framework scales with the number of vertices, where each vertex represents a subnetwork, and edges
denote both direct and interference links within and between subnetworks. The distributed power
control method exploits the temporal correlation of wireless channels, making the network recursive
and reducing the time required for output generation. Each MPNN model follows a structured sequence
of steps, some of which utilize Multi-Layer Perception (MLP) models. First step is the message generation
phase, where each vertex transmits messages to its neighbouring vertices. Then follows the message
aggregation phase, where vertices collect incoming messages. Finally, each vertex updates its state,
generates an output, and the cycle repeats.

The mathematical representation of this framework is the following:

Message generation: p;(t) = dD(el-(t —1),h(t - 1)),
Air message passing: a;(t) = {-Vi]- (m“lj,i(t)')r
State Update: e;(t) = U(ei(t —1),q;(t), hi(t)),
Output generation: p;(t) = Q(ei(t))
Where:

e p;isthe generated message of vertex i

o & isthe message generation MLP

e ¢; isan embeddings vector to store the vertex’s i state

e h; = h;; is the channel coefficient of the vertex’s i link between SNE and serving HC
e q;isthe aggregated message received on the vertex’s i SNE from neighboring HCs

e h;; is the channel coefficient link of the vertex’s j HC and vertex’s i SNE

e [ isthe state update MLP

e p; is the generated output of the vertex i

e () isthe output generation MLP

As shownin Figure 18, the MPNN's vertices, embedded within the HC nodes, execute the following steps.
The ® MLP model manages message generation, using vertex embeddings e and channel coefficients
h (estimated from channel measurements) as inputs to represent each vertex's internal state. During
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the message passing phase, these messages - encoded as pilot transmit power p - regulate the CSI-RS
transmission power of the HC nodes. Each SNE receives messages a from all HC nodes through reference
signal measurements and, after extracting the relevant information, reports them back to its serving HC
node. The U MLP model updates the vertex's internal state based on the received messages and channel
measurements, feeding the updated state recursively into the ® message-generation MLP for the next
iteration. Finally, the 0 MLP model processes the vertex's internal state to generate the p network's
output. This output determines the power control settings for data transmission from HC nodes to SNEs,
optimizing transmit power to minimize interference between subnetworks.

Air-MPRNN
[Msg. Gen.l Update J

Air-MPRNN
MR | e
MLP | MLP | MLP
Power MLP

MLP MLP

Output
Power MLP.

Air-MPRNN

Msg. Gen. | Update
MLP MLP

Air-MPRNN
Msg. Gen. | Update Msg. Gen. Msg. Gen. | Update
MLP MLP MLP | MLP |  MLP
Output Output
Power MLP Power MLP

Message Message State Output
Generation Passing Update Generation

Figure 18: MPNN framework’s phases.

Figure 19 illustrates two HC/SNE pairs utilizing MPNN to manage downlink transmit power in a
distributed manner, collaboratively optimizing power control to maximize the network's overall sum
rate. Each HC node integrates an Al/ML model that functions as an MPNN vertex, enabling decentralized
decision-making. Power control operates in the downlink direction, facilitating message passing and
interference management. Each SNE receives the serving HC node's signal combined with interfering
signals and Gaussian noise. The channel estimation results are then fed back to the HC node via the
uplink channel. A centralized manager, hosted at the 6G base station, coordinates the MPNN vertices.
Even though the figure depicts only two HC/SNE pairs, the implementation is scalable seamlessly to any
number of pairs. Additional HC nodes connect to the 6G parent network, with their serving SNEs
receiving the downlink signal alongside interference and noise from other HC nodes.
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Figure 19: Distributed power control through MPNN for interference management in 6G subnetworks.

3.2.2 Simulation Setup

This section describes the network architecture, the training procedure, and the MPNN integration as a
feature into an open-source RAN software application.

3.2.2.1 Al Model Definition and Training

Wireless channels are generated for direct and cross-links to train and evaluate the proposed
implementation. Each channel attenuates signal power due to path loss and multipath fading. Channel
realizations are based on standardized propagation model found in [27], suitable for short-range
scenarios across a wide span of frequencies. Although industrial evaluations in D2.2 [3] rely on the 3GPP
industrial channel model, this simulation tries to capture propagation conditions found also in other
short-range deployments. This choice reflects the broader applicability of the proposed solution, which
while relevant to industrial contexts, can be deployed for use across diverse scenarios. The generated
channels span across various SINR values for complete model training. The dataset used to train the
neural network comprises 1000 layouts, each with random SINR channels. For training, 80% of the
dataset was utilized to update the network's weights, and the remaining 20% was reserved for validation
in each epoch to prevent overfitting.

Regarding the network architecture and training parameters, various hyperparameters were tested,
selecting those that yielded the best results. Table 2 provides details on the configurations of the
message generation MLP, update MLP, and output MLP. The batch size is set to 10 layouts, representing
the number of random layouts per epoch used to update the MLPs' weights to optimize the reward
function, which is defined as the Sum-Rate of all pair’s link Rate.

Page 46 of 99



Project: 101095738 — 6G-SHINE-HORIZON-JU-SNS-2022

Table 2: Neural Network’s hyper-parameters.

Parameter Value
Message MLP @ {9,32,32,1}
State Update MLP U {10,32,8}
Output MLP {8,16, 1}
Embedding size 8
Epochs 100
Batch Size 10
Initial Learning Rate (LR) 0.002
LR decay factor 09
LR decay step 10
Optimizer Adam

The training was conducted in unsupervised manner on a desktop PC with an Intel i9 12th Gen processor,
an NVIDIA GTX 1650 GPU, and 32GB of RAM, using the PyTorch library [28]. As shown in Figure 20, the
model converged around the 30th epoch, achieving its peak performance with a 9.9% improvement of

Sum-Rate for validation compared to the initial training phase, and approximately a 7.7% gain over an
Equal Power Allocation (EPA) policy.
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Figure 20: Overall rate during model training for train and test data

3.2.2.2 Software Setup

To deploy the proposed solution in a functional environment, we use the srsRAN software suite
alongside GNURadio. srsRAN, an open-source platform, allows researchers, developers, and telecom
enthusiasts to implement and experiment with LTE and 5G protocols using software-defined radios
(SDRs) or in a fully software-based environment [29]. It provides a flexible framework for developing,
testing, and deploying cellular network technologies, making it a valuable tool for advancing wireless
communication research. With its modular design and extensive documentation, srsRAN is accessible to
both academic and industry professionals. GNU Radio is an open-source software development toolkit
that offers signal processing blocks for building communication systems [30]. It features a graphical user
interface and enables the creation and deployment of complex radio frequency systems using general-
purpose processors instead of specialized hardware. It is compatible with various SDR platforms but is
also used in software-only simulations without requiring physical hardware.

Figure 21 illustrates the interaction between all applications within the setup, which consists of gNB-UE
pairs implemented using srsRAN. In this context, we consider the gNB an HC node, while the UE
represents an SNE. These pairs are interconnected and experience mutual interference through
GNURadio, which simulates the wireless channels as previously described. Each pair is associated with
its own MPNN vertex that executes MPNN functions. Additionally, we developed a "Centralized
Scheduler" process to communicate with all MPNN vertices, coordinating them to enable synchronous
message-passing broadcasts. Synchronization is crucial, as vertices may operate at different execution
speeds, and an updated power control decision is only valid when all messages have been received and
aggregated. Data exchange between processes is handled via inter-process communication using the
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ZeroMQ library. ZeroMQ supports multiple programming languages and provides a lightweight, flexible
messaging layer, simplifying communication while abstracting the complexities of socket programming
[31]. Notable, even though the figure displays only two pairs, it can be easily expanded to more pairs.

MPNN
1 Vertice1

| — O PyTorch =———
SRSRAN SRSRAN
Toiee) el sanumdo— )
RA

SRS SRSRAN
O PyTorch

} MPNN
Vertice2

Figure 21: The block diagram of the implementation setup shows how the processes exchange data between them.
3.2.3 Results and Analysis

Measurements were carried out using two, three, and four gNB/UE pairs. All communication channels -
including direct and interference links - were simulated using GNURadio. The SINR of each pair was
controlled to explore different configurations. Pair-1's SINR was treated as a variable, while the SINR
values for the remaining pairs were set to 5 dB, 10 dB, or 20 dB. Each scenario was simulated for at least
20 seconds, beginning with the EPA policy and transitioning to the GNN policy during runtime. During
post-processing, the throughput reported by each pair was collected, averaged over time, and used to
compute the system's overall Sum-Rate.

Figure 22 shows the total Sum-Rate across all measurement scenarios, varying by the number of gNB/UE
pairs. Results using the MPNN approach are represented with solid lines, while the EPA baseline is shown
with dashed lines. As expected, the Sum-Rate tends to rise by either increasing SINR values or using a
higher number of pairs. When comparing MPNN to EPA, the proposed method generally matches or
outperforms EPA - except in low-SINR scenarios with only two pairs. In situations where all pairs
experience similar SINRs, there is typically no performance gain. However, the more the channel
conditions differ among the pairs, the greater the advantage provided by the MPNN. As a notice, with
two pairs, the Sum-Rate is capped at roughly 56 Mbps due to the numerology limiting the peak rate per
pair to about 28 Mbps.

The scenarios where MPNN outperforms EPA were anticipated. When channel conditions are similar
across all pairs, equal power allocation tends to be optimal, as no pair is disadvantaged. In contrast,
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when some pairs have more favourable channels, they can reduce their transmit power - and
consequently their SINR - to limit interference toward others, improving overall throughput. The best
performance was observed in a three-pair scenario with SINRs of 28 dB, 5 dB, and 10 dB, where MPNN
achieved a maximum gain of around 13.16% over EPA. Although the average improvement across all
tests was around 7%, this seemingly modest gain can become substantial when aggregated across a
larger network with multiple subnetworks, leading to significant overall performance benefits.
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Figure 22: Sum-Rate of the considered 6G subnetwork over SINR1 (pair-1) for (A) one, (B) two, and (C) three interfering pairs
with different SINR, such as 5, 10 and 20 dB considering the MPNN (GNN) and the EPA solutions.

3.3 Summary

In this chapter, we have addressed critical challenges in RRM for densely deployed and highly mobile in-
X subnetworks, emphasizing the issues arising from outdated CSI and external interference. By
developing a novel Spatio-Temporal Attention-Based LSTM model, we demonstrated substantial
improvements in predicting future channel states, thereby enabling proactive and informed RRM
decisions. Additionally, our proposed resilient DNN framework has shown significant benefits in jointly
optimizing sub-band allocation and power control, effectively enhancing spectral efficiency, ensuring
robust QoS, and mitigating performance degradation even under highly dynamic and interference-prone
industrial environments. Overall, these contributions provide a strong foundation for reliable, efficient,
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and adaptive resource allocation solutions, paving the way toward practical and robust 6G-enabled
industrial wireless networks.

Furthermore, the simulation-based validation presented in the last section demonstrates that the
distributed Al-driven power control solution, utilizing the Air-MPRNN framework, effectively mitigates
interference between subnetworks operating in constrained spectral environments. The implemented
framework specifically showcases the capability of HC nodes to dynamically coordinate their
transmission power decisions by indirectly exchanging interference information through aggregated
pilot signals, as part of the RRM role they are envisioned to support. This decentralized approach
enhances overall network reliability and throughput performance, particularly under heterogeneous
SINR conditions.
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4 GOAL ORIENTED RRM

In this chapter, we address the challenge of inter-subnetwork coexistence in dense environments such
as factory floors, where multiple robots - each equipped with its own subnetwork - can cause mutual
interference. This problem, illustrated in Figure 23, builds on the formulation introduced in [2] and
targets the factory floor use case proposed in [3]. Differently from the approaches presented in chapter
3, we investigate here a goal-oriented solution where radio resources are optimized with awareness of
the underlying industrial actions and missions. The work presented here has been done in collaboration
with the 5GSmartFact project [32].

4.1 Velocity Control for Inter-Subnetwork Interference Mitigation in Mobile Subnetworks

Conventional interference-mitigation methods in a subnetwork context, such as transmit power control
or channel allocation, become less effective under tight spacing because transmitters remain in
proximity, and interference grows rapidly with density. Instead, we propose a communication-aware
dynamic speed control (CADSC), whereby each mobile robot adjusts its speed to maintain an acceptable
distance from others, thus alleviating mutual interference. Crucially, signal-to-interference-plus-noise
ratio (SINR) requirements must be upheld for ultra-reliable low-latency communication in each
subnetwork. We employ reinforcement learning, specifically, proximal policy optimization (PPO), to
learn an optimal control policy that balances travel-time minimization with stringent SINR constraints.
Through simulations, we show that CADSC significantly improves SINR reliability (up to over 95%
probability of meeting the SINR threshold) at the cost of only a modest increase in average travel time
compared to a simple “maximum speed” control policy. It worths emphasizing that our results were
published in [33].

Mobile Mobie Mabile
subnebwork 1 subnetwork 2 ELDAETWOTK 3

Subnetwork denvice

Subnatwork Accass pont
Inibra-subnetwork
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“* Intererence
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Figure 23: Each mobile robot carries a subnetwork to facilitate the wireless communication between devices in the robot.
There is strong mutual interference between the subnetworks due to the proximity of the robots on the factory floor.
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4.2 System Model

Each robot carries one subnetwork consisting of a device (e.g., a sensor or controller) and an onboard
access point. All subnetworks share the same frequency spectrum. Let N denote the total number of
mobile subnetworks (robots). At time t, subnetwork n transmits with power p¥ and experiences
interference from all other subnetworks ~m # n, whose transmit powers are p¥. The SINR for
subnetwork n at time ¢ is:

prhy
n
mp® 4 52

m=1m#n pT mn

SINRY =

where:

. h,(f) is the desired link gain from the subnetwork’s device to its own AP,

. h,(,?n is the interference link gain from subnetwork m to AP n,

e o2 isthe noise power.

In realistic industrial deployments (e.g., 6G factory scenarios), channel factors include path loss,
shadowing, and small-scale fading, often modelled via 3GPP indoor factory channel models (as in [10],
[34]). Because of dense clutter or line-of-sight conditions, interference intensifies whenever
subnetworks move too close to one another, as demonstrated in [4].

4.2.1 Reliability Constraints (BLER Model)

Since each subnetwork may handle URLLC traffic [3], where reliability targets can be on the order of
1075 or even 107° [3], we use the finite-block length block error rate (BLER) formulation from [35]. This
approach captures the fundamental trade-offs inherent in URLLC and aligns well with the use cases
outlined in [3]. Concretely, for a packet of b bits transmitted in a time slot of T seconds over bandwidth
B, the number of channel uses is 1 = 2B7. The BLER can be approximated as:

1
% ‘log; (1+SINRY) = b +5 - log, ()

BLERY = @
g -V (SINRY)

where the function

SINR - (SINR + 2)

V(SINR) =
( ) 2 - (SINR + 1)?

- (log; e)?

captures the channel dispersion. Achieving a sufficiently low BLER implies maintaining an SINR above
some minimum threshold (SINR;, pip).
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4.3 Robot Mobility and Speed Control Problem

4.3.1 Robot Motion Model

The subnetwork is installed in a mobile robot navigating a target course as shown in Figure 24. We

assume each robot (carrying subnetwork n) navigates a preplanned trajectory of length (e.g., 25 meters).
®)

5~ includes:

The robot state x

Lateral error e (distance from the center line of the path),
Yaw angular error 6,

Derivatives of these errors é and 0,

AW DN e

The difference between the robot’s current speed and its target speed v.
® _ . - 1T . . .
Hence x,;” = [e, é0,0, v] . The dynamics are discretized as:

x,(ltﬂ) =4, x,(lt) + B, u,(f)

®

Here, u,

contains the robot’s angular and linear acceleration inputs. A linear quadratic regulator
(LQR) typically tries to drive e, 8, etc to zero errors by applying suitable accelerations. Crucially, that

®

LQR relies on a target speed input v,,*, which we plan to adapt dynamically, to limit or increase each

robot’s speed based on interference conditions.

Target course

Figure 24: Mobility model of the robot. The state consists of the lateral error e, the yaw angular error §, their derivatives and
the velocity error v.

4.3.2 Optimization problem formulation

The overarching objective is to ensure that each robot completes its mission quickly while maintaining
a minimum SINR for its intra-subnetwork communication. Minimizing travel time generally means

choosing v,ﬁ“ = Vpax but if multiple subnetworks cluster, the resulting interference can undercut the

required SINR threshold. Hence, the problem is stated as:

7

P N T - (¢)
maximize o Xn=1X¢=0 ”vn — Vmax
n
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subject to:
SINR® > SINRymin »  Vmin < 0 < U

This reflects a trade-off: robots want to stay near v,,x but must scale back whenever grouping too
closely threatens the SINR constraint.

4.4 Reinforcement Learning Approach

4.4.1 PPO-Based Speed Control

Proximal Policy Optimization is used due to its robustness in continuous action spaces. We propose a
centralized RL agent that, at regular intervals, observes the state of all subnetworks (channel gains,

SINRs, current speeds) and outputs a continuous action vector {a,(f)}. Each component a,(f) is then

scaled to define the target speed v,gt) € [0, vmax]- The potential delay introduced by collecting state

information from all subnetworks and transmitting it to the central agent for action computation is not
accounted for in this study.

The observation vector is defined as following:

N
R® = 2 (”1_715 - vmax” - R_SI)VR,H)’
n=1

where:

R®

. t .
ien =K, if SINRY < SINRy i, and 0, otherwise.

A larger penalty constant K enforces stricter adherence to SINR constraints but may force the policy to
reduce speeds more often. PPO updates an actor network (which selects actions) and a critic network
(which estimates the value function) with a clipped objective, stabilizing learning by limiting large steps
in policy space.

4.5 Evaluation and Results
4.5.1 Implementation and training

The neural networks (actor and critic) each have two hidden layers of 256 neurons and take as input a
flattened state vector of dimension > 100 in the test scenario with 10 robots. During training:

1. Each episode simulates the robots traveling a set distance, gathering transitions
(S(t)’ a(t),R(t),s(t“)).
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2. The agent periodically updates its parameters using minibatch gradient descent on both the
critic’s value loss and the actor’s clipped surrogate objective.

3. An exploration variance or standard deviation p for the action distribution is gradually decayed
from a higher value to a smaller one.

After convergence (often hundreds of thousands of time steps), the trained policy can be deployed: at
each sampling interval, the agent computes the speeds for all the different robots based on the latest
channel/interference conditions, maximizing the reward. This behaviour is illustrated in Figure 25 for
different CADSC training penalty constant K.
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Figure 25: Cumulative reward per episode during the PPO training phase of the communication-aware dynamic speed control
policy.

4.5.2 Simulation Setup

We simulate 10 robots traveling 25 meters on parallel tracks in a 30 m x 30 m factory environment. The
main parameters are derived from the use-case analysis in [3] and can be summarized according to Table
3.

Table 3: Simulation Assumption

Parameter | Value Parameter Value
Factoryarea | 30m x30m | Number of | 10
mobile
subnetworks
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Subnetwork | 1m Number of | 1

radius devices per
subnetwork

Max speed 2m/s Travel distance 25m

Clutter 0.2,2m Correlation 10m

density, distance

Clutter size

Shadowing | 4dB, 5.7dB | Path loss | 2.15, 2.55

std (LOS, exponent (LOS,

NLOS) NLOS)

Maximum 0dBm Bandwidth 1.3 MHz

transmit

power,

Pmax

Data size 32 bytes Center 10 GHz
frequency

Noise figure | 10 dB Traffic/Sampling | 20ms
interval, dt

Traffic type | Periodic Latency 0.5ms

We compare, as baselines:

1. Max-Speed (Fixed Power): Robots move at full speed; each device transmits at 0 dBm0O.
Max-Speed + Transmit Power Control: A non-convex optimization (SLSQP) tries to allocate
powers to maximize throughput fairness.

3. CADSC (PPO): The proposed RL-based speed control, where transmit power is fixed but robot
velocities are adaptively adjusted.

4.5.3 Performance Evaluation and Discussion

The evaluation results, as illustrated in Figure 26 and Figure 27, demonstrate the impact of
communication-aware dynamic speed control (CADSC) on SINR reliability, travel time, and BLER
distribution. In Figure 26, we observe that in scenarios where robots move at maximum speed without
speed control, only about 75% of the robots achieve the required SINR threshold. By contrast, when
CADSC is applied with a moderate penalty constant of K=10, the probability of meeting the SINR
constraint increases to approximately 95%, with even higher reliability observed for larger values of K.

Introducing communication awareness through CADSC slightly increases the average travel time. For

instance, while robots operating at maximum speed complete their journey in approximately 12.5
seconds, CADSC-adjusted robots take around 14 to 15 seconds. However, this minor delay is offset by a
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significant improvement in SINR compliance, particularly in highly dense environments where
interference is a critical issue.

The BLER distribution in Figure 27 further highlights the benefits of CADSC. Most robots operating under
CADSC maintain BLER values in the range of 107 to 108, demonstrating a high level of reliability. In
contrast, purely adjusting transmit power proves ineffective in high-density scenarios, as interference
from closely spaced subnetworks remains too strong when speed control is not applied. Additionally,
the training curves referenced in Figure 25 show that the cumulative reward per episode stabilizes after
a few hundred thousand training steps, indicating that the RL-based CADSC policy successfully learns an
optimal strategy. The impact of penalty scaling is also evident: as the penalty value K increases, the RL
agent prioritizes avoiding SINR violations more strictly, resulting in more conservative speed allocations.
While this leads to better communication reliability, it also slightly prolongs travel time, reflecting the
trade-off between network performance and mobility efficiency.

T
CADSC K = 30 097 t CADSCK =30 14.5
CADSC K = 20 096 | CADSCK =20 14.4
CADSC K = 10 0.95 CADSC K =10
Max speed 0.75 Max speed
0.7 075 08 08 09 095 1 10 11 '1‘2 13 14 1I5

Pr(SINR > SINR,,in) Average arrival time (s)

Figure 26: The average arrival time for a travel distance of 25m vs the probability.
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Figure 27: The Complementary Cumulative Distribution Function (CCDF) of the achieved block error rate.

4.6 Summary

We show that dynamic speed control adjusting the robots’ velocities to maintain better spacing can
significantly mitigate interference between adjacent subnetworks, where classical approaches (e.g.,
transmit power control alone) offer limited gains. By leveraging reinforcement learning, we build a
flexible, data-driven policy that automatically balances navigation performance (travel time) and
communication constraints (SINR = SINR jin)-

Key Takeaways

1. Controlling motion jointly with communication constraints yields superior interference
management in future 6G subnetwork systems.

2. The penalty for slower speed is moderate, yet the SINR reliability improvement is large.

3. PPO manages the continuous action space of multi-robot speed settings and converges to stable
solutions.

Looking forward, more advanced schemes could combine path planning (not just speed control) with
interference-aware decision-making or jointly optimize transmit power and speed, potentially extending
the benefits to even denser or more dynamic industrial scenarios. Moreover, future work should include
feasibility studies that account for stale or delayed state information resulting from transmission latency
and overhead. The proposed CADSC approach also underscores the importance of co-designing robotic
mobility and wireless resource management in next-generation networks.
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5 ENABLERS FOR RRM IN SUBNETWORKS

In this chapter, we discuss key aspects and potential solutions to enable radio resource management in
both licensed and unlicensed spectrum bands applied for supporting the required communication
needed in subnetwork solutions. The presented study and solutions are a continuation of the work on
previous deliverable D4.1 [2]. Here as well, we assume that subnetworks can be built up on top of
relevant features of Sidelink, specified in 3GPP standards. We will discuss potential enhancements
needed for effective subnetwork operations, and revisit previous proposals and observations from
deliverable D4.1. Additionally, we will provide further studies and considerations for improving
subnetwork performance.

Subnetwork communication can be closely related to sidelink communication, particularly in scenarios
where direct device-to-device (D2D) interactions are essential. For example, inter-subnetwork
communication can occur between HC devices that act as access points for different subnetworks in an
indoor interactive gaming scenario, as described in D2.2 [3], where multiple gaming devices such as VR
headsets or gaming consoles of different players (each representing a subnetwork) may need to
exchange information to synchronize eXtended Reality(XR) scenes. The HC devices on these consoles
can communicate directly to share pose and orientation data, coordinate split-rendering operations,
and ensure a seamless immersive experience. Similarly, intra-subnetwork communication can occur
between SNE devices within a subnetwork or between a SNE and a HC device. In an XR setting, devices
such as VR headsets and sensors (which may be categorized as LC or SNE devices) within a subnetwork
may communicate directly to perform coordinated actions, such as synchronizing visual and sensory
inputs. For example, in an indoor interactive gaming scenario, VR headsets worn by players can
communicate directly with sensors and actuators attached to their bodies to track movements and
provide real-time feedback. Additionally, these VR headsets can communicate directly with a central
processing unit or gaming console (HC device) to provide video data and feedback, enabling responsive
gaming experiences.

Sidelink communication, as specified in 3GPP standards [36], provides a rich framework which,
depending on the configuration and deployment scenario, allows direct communication between
devices to work independently of a central network infrastructure. This is particularly beneficial for
subnetworks, which often require localized communication capabilities. The 3GPP sidelink specifications
include several features that can be leveraged for subnetwork communication:

e In-coverage and out-of-coverage operation: Sidelink supports communication both within the
coverage area of a base station and in scenarios where devices are outside the coverage area.

e Power saving features: Mechanisms such as Discontinuous Reception (DRX) help reduce power
consumption, which is crucial for battery-operated devices.

e Inter-UE coordination (IUC): Sidelink includes features for coordinating transmissions between
user equipment (UEs) to minimize interference and improve communication reliability.

e Support for licensed and unlicensed bands: Sidelink has been specified to operate in both
licensed and unlicensed spectrum, providing flexibility for deployments.
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e Centralized and distributed resource allocation modes: Sidelink supports two allocation modes.
In Mode 1, the base station schedules the resources for the devices to communicate with other
devices via sidelink. In Mode 2 the devices autonomously select the resources from a resource
pool which can be pre-configured or configured by a base station.

Despite the advances in sidelink communication, several enhancements are needed to fully support the
stringent requirements of subnetworks. These enhancements can include improvements to the air
interface, such as enabling in-coverage or out-of-coverage subnetwork APs to sense the channel, acquire
resources, and schedule those resources to subnetwork devices, extending beyond the capabilities of
Sidelink Mode 2. Additionally, architectural enablers are needed to enhance authentication and policy
enforcement in subnetwork scenarios, ensuring secure and compliant operations. Furthermore,
enhancements in channel access mechanisms are recommended to better accommodate subnetworks
operating in unlicensed bands, providing more efficient and reliable communication in these
environments.

In deliverable D4.1, we proposed enhancement for subnetwork resource pool reservations as well as for
in-band emission (IBE) mitigation, as summarized below:

e Subnetwork Resource Pool Reservations: We suggested that HC devices acting as access points
should be capable of reserving shares of the sidelink resource pool for intra-subnetwork
communication. This includes the use of enhanced Physical Sidelink Control Channel (ePSCCH)
for HC-to-HC coordination and subnetwork-specific PSCCH (sPSCCH) for informing SNEs about
available resources.

e |BE Mitigation for Subnetwork Resources: We highlighted the impact of IBE on subnetwork
communication, particularly when using frequency domain multiplexing. Potential enablers for
mitigating IBE include time-domain multiplexing, stricter IBE requirements in UE RF standards,
adapting transmission starting points, and IBE-aware inter-UE coordination mechanisms.

In this deliverable, we will provide further studies on the operation of SNE-HC and HC-HC
communication, both in separate bands (as also discussed in D4.1) and in shared bands (not treated in
D4.1). We will explore further issues in relation to the subnetwork operation in unlicensed bands with
respect to channel access leading to considerations for supporting semi-static channel access for
sidelink. We also discuss further the impacts of IBE in these settings. Finally, we will discuss the
opportunistic usage of licensed available resources for subnetworks to avoid sensitivity degradation
issues for wide area communication.

5.1 HC-HC and SNE-HC sidelink communication in a shared band

In deliverable D4.1, we discussed the problem of IBE and its impact on subnetwork communication. IBE
is the result of power leakage from the allocated transmission resource to the non-allocated
transmission resource in the frequency domain (possibly being used by another device), primarily caused
by transceiver impairments such as IQ imbalance, nonlinearity of RF components, quadrature imbalance,
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and carrier leakage [37]. This leakage can significantly degrade the SINR for adjacent transmissions,
leading to reduced communication reliability and efficiency.

IBE can cause substantial interference when two transmitters use intra-band adjacent resources,
particularly in scenarios where one transmitter is close to a receiver while another transmitter is far
from the receiver (near-far problem). This interference is exacerbated in unlicensed bands where
interlaced resource allocation is used to meet regulatory requirements for occupied bandwidth (OCB)
and power spectral density (PSD). In D4.1, we evaluated the impact of IBE in an indoor scenario,
representing an immersive education use case. The evaluation considered both inter-subnetwork HC to
HC communication (longer distance and higher power) and intra-subnetwork SNE to HC communication
(shorter distance and lower power). The results showed significant performance degradation in terms
of SINR, especially under high load conditions and with interlaced resource allocation. Some potential
solutions discussed in D4.1 include enforcing stricter RF specifications for lower IBE, adjusting
transmission starting points, and employing IBE-aware inter-UE coordination mechanisms.

Here, we provide further analysis using updated assumptions based on consumer subnetworks use
cases, applicable for example to immersive education and interactive gaming scenarios, as described in
D2.2 [3]. In this part (and in section 5.2), we consider the use of unlicensed spectrum for subnetworks,
therefore the focus here is on the case where interlaced resource allocation is applied. In addition to the
IBE aspect aforementioned, we discuss other limiting aspects in this kind of environment.

Setting the scene

In unlicensed spectrum bands, where multiple technologies like Wi-Fi, LTE-LAA, and 5G NR-U coexist
without centralized coordination for using the spectrum resources, channel access procedures are
critical to ensure fair and interference-free operation. Regulatory bodies (e.g., ETSI) mandate protocols
such as Listen-Before-Talk (LBT) to prevent collisions and promote a fair spectrum sharing. These
procedures require devices to check the channel availability through an energy sensing before
transmitting, minimizing disruptions to incumbent systems like Wi-Fi. For cellular systems operating in
sub-7 GHz unlicensed bands (e.g., NR-U), 3GPP specifies dynamic channel access, such as Type 1 and
Type 2 procedures, as well as semi-static channel access procedures in order to comply with global
regulations [38].

In this part we will assume that dynamic channel access is used for subnetworks based on Type 1 and
Type 2 procedures. Type 1 involves a full contention-based LBT process with random backoff, requiring
devices to sense the channel for a random duration to determine if it is idle before transmission. The
process includes decrementing a counter based on idle sensing slots until the counter reaches zero, and
after that the transmission is allowed. Type 2 procedures employ a predefined sensing period before
transmission under restricted conditions, for example, Type 2A (single sensing in at least a 25 ps channel
idle gap) and Type 2B (single sensing in a 16 us channel idle gap) can only be used within a channel
occupancy time initiated after a Type 1 procedure. Type 2C allows a short transmission without prior
sensing, limited to 584 us transmission. These procedures are defined for what is known as load-based
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equipment (LBE) channel access, and supported for DL, UL as well as for sidelink communication in
unlicensed bands.

The evaluation scenarios which we assume here consider subnetwork deployments where SNE-HC and
HC-HC communication can happen in separate bands (i.e., a channel of 20 MHz is dedicated to each type
of communication) or in shared bands (i.e., a common channel of 20 MHz is shared by both type of
communication). Figure 28 displays an example of the layout of such scenario where there may be
possible simultaneous communication between HC to HC and between SNE to HC from different
subnetworks coexisting in the same environment.

Figure 28: Example of subnetwork deployment where SNE-HC (blue) and HC-HC (orange) communication may coexist.

The HC devices are assumed to be of a higher power class, meaning they can transmit with a power 10
times higher than a SNE, when they are exchanging data with an HC device of another subnetwork. That
may be for delivering low-latency position/orientation and command data between interacting users,
as well as resource coordination signals for RRM based on sidelink control information and IUC control
elements. While the SNEs are assumed to be of a lower power class for transmitting at the short distance
to their local subnetwork HC device with a power of -10 dBm. The data may be, for example, local XR
traffic such as video/audio and interaction data, as well as feedback signals and channel state reports
used for RRM.

In order to mitigate the IBE impact when all these communications coexist, we adopt stricter
requirements by considering an IBE general term 10 dB lower than the current limit in the 3GPP
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specifications (defined in Table 6.4F.2.3-1 for interlaced RB allocation and Table 6.4.2.3-1 for contiguous
allocation in [39]), and compare with the case where the devices just meet the exact minimum
requirements. Additionally, in section 5.2, we will discuss other alternatives for mitigating IBE.

Evaluation methodology

The evaluation is performed using system level simulations with the assumptions mainly based on the
evaluation methodology adopted for the 3GPP Rel-18 NR Sidelink evolution [40], with some adaptation
for the subnetworks use case such as denser deploymentin a smaller area and short distance low-power
SNE-HC communication. Note that the existent channel model from 3GPP was assumed in this study as
no updates has been recommended to the channel model for the indoor consumer scenario in the
analysis from 6G-SHINE project's Deliverable 2.3: Radio Propagation Characteristics for IN-X
Subnetworks [4].

Following the KPI aspects for the consumer use cases defined in D2.2, we consider the system capacity
as described in TR 38.838 for XR traffic as the KPI for the study. The XR capacity can be defined as the
maximum number of users per cell with at least 90% of UEs being satisfied. Here we associate a user as
one subnetwork, where a SNE transmits to the HC or where an HC transmits to an HC of another
subnetwork. The XR satisfaction ratio measures the percentage of XR users that receive at least 95% of
their packets within the specified packet delay budget (PDB). For HC-HC communication, generating
pose/control traffic, the PDB is assumed to be 10 ms. For SNE-HC communication, generating multi-
stream traffic, the PDB is assumed to be 15 ms. Table 4 summarizes the evaluation assumptions.

Table 4: Summary of evaluation assumptions.

Parameter Value

Scenario A single room of 20 m x 20 m x 3 m (length x width x height) for consumer use
case, e.g., indoor interactive gaming.

Subnetwork N subnetworks are deployed at a random location in the scenario. Each

deployment subnetwork consists of 1 HC acting as AP which communicates with 1 SNE at

a time (multiplexing within subnetwork is not considered).
SNEs are up to 2.5 m far apart from the HC device which they connect to.

The subnetworks do not overlap in space.
Channel model Indoor mixed office (InH) from 3GPP TR 38.901.
Traffic modelling | XR traffic based on 3GPP TR 38.838.

HC-HC: Pose/control traffic (100 B periodic traffic with 4ms interval), PDB =
10ms.
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SNE-HC: Multi-stream traffic (Stream 1: Pose/control; Stream2: XR video
frames following a truncated Gaussian with mean 20838 B/frame, minimum
10419 B/frame and maximum 31257 B/frame at 60 fps), PDB = 15 ms.
Antenna 1 TX by 4 RX antenna configuration for SNE-HC.

configuration

2 TX by 4 RX antenna configuration for HC-HC.

Carrier frequency | 5 GHz carrier frequency with 20 MHz channel bandwidth.
and bandwidth
Slot structure Orthogonal frequency division multiplexing (OFDM) with 15 kHz SCS.

Assuming Sidelink slot configuration with 14 symbols per slot.

e 4 out of 14 symbols are overhead (to account 2 DMRS, 1 AGC, 1 GP).
e control channel (PSCCH) equivalent to 2 RBs of the sub-channel.

Sub-channel 10 sub-channels of 10 RBs per sub-channel.

configuration
For interlaced allocation, one sub-channel is equivalent to a 10-RB interlace.

Up to 5 subchannels can be allocated at a time.

Scheduling Sidelink mode 2 autonomous resource selection with 100 ms sensing window
and 2 ms selection window.

Link adaptation Link adaptation targeting 10% BLER, following MCS table 4 from TS 38.214
which includes 1024-QAM.

Power control Fixed transmit power of 0dBm for HC in HC-HC communication and -10 dBm
for SNEs in SNE-HC communication.

LBT LBT procedure in unlicensed (Type 1 and Type 2 within a channel occupancy
time according to TS 37.213) with energy detection threshold of -62 dBm.

IBE modelling Based on minimal requirements from 3GPP TS 38.101-1.

- Table 6.4.2.3-1 assumed with contiguous RB sub-channel allocation.
- Table 6.4F.2.3-1 assumed with interlaced RB sub-channel allocation.

Analysis of unlicensed band performance

Figure 29 shows the XR satisfaction ratio results versus the number of deployed subnetworks generating
the XR traffic in the room.
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Figure 29: UE satisfaction ratio for different number of subnetworks in unlicensed band with Typel/Type2 channel access.

As expected, the satisfaction ratio decreases more rapidly with an increasing number of subnetworks
when using a shared band compared to dedicated bands. A notable observation is the significant
degradation in HC-HC communication within shared bands. The high-intensity multi-stream XR traffic of
the SNE-HC communications predominantly utilizes the available resources in both frequency (limited
to 5 subchannels) and time, resulting in prolonged channel occupancy. This blocks access for HC-HC
traffic, leading to considerable performance degradation when they coexist in a shared band.

Regarding XR capacity, the results show that for SNE-HC communication, approximately 5 subnetworks
can be supported in a shared band. In contrast, when operating in separate bands, the capacity increases
to support 10 subnetworks without IBE mitigation and up to 14 subnetworks with IBE mitigation (i.e.,
with “IBEoffset: 10”, meaning that the IBE general term is reduced by 10 dB for subnetwork devices with
enhanced front-end implementation). For HC-HC communication, the capacity is limited to only 2
subnetworks in a shared band. However, in separate bands, the capacity is significantly higher,
supporting 16 subnetworks without IBE mitigation and at least 20 subnetworks with IBE mitigation.

These results highlight the importance of IBE mitigation in enhancing XR capacity and overall network
performance. Moreover, they also make it evident that dynamic channel access remains a main
bottleneck for performance, particularly in shared bands where resource contention and extended
channel occupancy significantly impact communication efficiency. In the next part, we will discuss
further enhancements for overcoming these issues.

5.2 Considerations for supporting semi-static channel access in unlicensed bands

In the previous part, it is assumed that the subnetworks are deployed using unlicensed spectrum bands,
therefore the devices implement interlaced allocation to meet regulatory requirements. In addition, it
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is assumed also that the devices need to perform a LBT procedure to gain access to the channel. This
part discusses in more details about potential channel access enhancements for subnetworks.

In addition to the conventional dynamic channel access explained previously, 5G NR also specifies semi-
static channel occupancy procedures defined for frame-based equipment (FBE) channel access, as
shown in Figure 30. FBE is applicable for environments where the absence of other radio technologies
sharing the spectrum is guaranteed, such as by regulation or private premises policies. This procedure
involves initiating channel occupancy at fixed periods. The fixed frame period (FFP) can be configured
from 1 ms to 10 ms. The base station or UE initiates a channel occupancy by transmitting a DL or UL
transmission burst at the beginning of the FFP after a clear channel assessment (CCA) for at least a
sensing slot duration (9 ps). Once the channel occupancy is initiated, DL or UL transmission bursts can
occur within the channel occupancy time without further sensing if the gap between bursts is at most
16 ps. Additionally, no transmissions are allowed during an idle period before the start of the FFP. The
idle period should be at least 5% of the FFP with a minimum of 100 us [38].

cca -

Clear Channel
Assessment
{CCA) Timeline

Allowed
Transmission
Timeline

Channel
Occupancy Time

\/

Idle
Period

Channel

A

Occupancy Time

Idle
Period

Fixed Frame Period

Fixed Frame Period

Figure 30: Example of timing of the channel access mechanism for FBE [41]

It should be noted that dynamic channel access is more suited for unpredictable environments, while
semi-static channel access is more appropriate for controlled and predictable environments with
guaranteed absence of other technologies. Previous works have shown that semi-static channel access
is beneficial for low latency communications in controlled environments, due to its predefined channel
access timing structure which allows better coordination whereas LBT procedures suffer with
unpredictability of the random back-off algorithm and variable contention windows [42].

However, the described semi-static channel access is not specified for sidelink communications in 5G
NR. Here we analyse the benefits of supporting semi-static channel access in the future for subnetworks.

For enabling semi-static channel access, we consider a new slot configuration including 2 guard-period
symbols instead of the legacy sidelink slot with a single guard-period symbol, as illustrated in Figure 31.
That obviously represent a capacity loss for the data channel, however, the extra gap is needed to meet
the minimum idle period requirement for an FFP of 2 ms, as described above. Note thata 2 ms FFP is a
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typical configuration for RRM test cases defined by 3GPP TS 38.133 [43] for UL and DL, though not yet
defined for sidelink. We assume that the FFP configuration is common to all subnetworks. In practice,
this configuration should be pre-configured or indicated, e.g., via radio resource control (RRC) signalling
to the UEs in the room. Alternatively, the configuration could be broadcast, e.g., by a sync source UE

using the sidelink synchronization signal block.

F 3

FFP=2ms

coT

slotn+l ———»

Figure 31: Modified sidelink slot configuration considered for semi-static channel access.

The remaining scenario settings and evaluation assumptions are the same as those of the previous part

which are listed in Table 4.

Analysis of semi-static channel access

Figure 32 shows the XR satisfaction ratio results versus the number of deployed subnetworks applying
semi-static channel access with the described configuration.
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It can be noted that the performance has greatly improved in comparison to the results where dynamic
channel access is used in the previous part within section 5.1, especially for the HC-HC communication.
For SNE-HC communication, the XR capacity is of approximately 6 subnetworks in a shared band. With
separate bands, the capacity ranges from 12 subnetworks without IBE mitigation to 16 subnetworks
with IBE mitigation. For HC-HC communication, the XR capacity is increased to more than 20
subnetworks in both shared and separate bands. That is more than 10 times the capacity of dynamic
access in shared bands. That is due to the almost negligible LBT blocking enabled by the semi-static
channel access applied in the controlled environment. Since the CCA for both SNE-HC and HC-HC traffics
are aligned in time during the idle period, they can access the channel simultaneously. The prevention
of transmission collisions in this case relies mainly on the sidelink mode 2 distributed resource selection
procedure. It should be noted that the FFP may still add a small delay for FFP alignment, since a channel
occupancy can only start at the beginning of an FFP. Also, there is small capacity penalty due to the extra
guard-period symbol needed in this case to meet the required idle period.

Analysis of IBE aware allocation

In the evaluation above, we show the potential performance improvement when IBE general component
is reduced by an offset of 10 dB. However, pursuing such reduction via hardware improvements could
translate in increased device cost. An alternative solution is to apply an IBE aware resource allocation
targeting to diminish the leakage from the HC-HC communication to the SNE-HC communication and
vice-versa when they operate in a shared band.

The solution can be enabled by an IBE aware inter-UE coordination mechanism. That includes the
subnetwork devices exchanging information of power class or expected transmit power in the reserved
resources of the sub-pools used for HC-HC and SNE-HC. The receiving devices sensing the reservations
can then determine how severe the IBE will impact its reception and based on that it provides this
information to the transmitting device, such that resources prone to suffer from IBE issues are indicated
as non-preferable resources. As shown in Figure 33, the implementation of this solution can be based
on enhancing the Sidelink IUC framework such that a UE can determine its preferred/non-preferred
resources in IUC scheme 1 considering the impact of IBE from one interlaced RB sub-channel to another.
The UEA and UEB in the figure could be two HC devices which coordinate the use of resources for inter-
and intra-subnetworks communication.
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Figure 33: IBE-aware Inter-UE coordination scheme (Red steps highlight impact on existing IUC procedure).

For demonstrating the potential gain, we assume a scenario where both the SNE-HC and the HC-HC
communications generate a pose/control traffic as described in Table 4. Note that this traffic assumption
is different from the assumption in previous results where SNE-HC generates a high intensity multi-
stream traffic, dominating the use of resources and becoming the main source of interference in the
scenario. Here instead, with the common traffic model for SNE-HC and HC-HC, a higher number of
subnetworks is assumed for the evaluation. This also means that the supported number of subnetworks
is not directly comparable as to the earlier results.

For simplicity, the IUC signal in MAC layer is not explicitly modelled in the simulator, meaning that the
transmitting devices have ideal knowledge of the interlaced sub-channels which should be excluded for
avoiding IBE leakage from the neighbouring subnetworks towards its receiving device.

Figure 34 shows the XR satisfaction ratio results versus the number of deployed subnetworks using IBE
aware resource coordination in a shared unlicensed band. Note that the semi-static channel access as
described earlier is also applied here.
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Figure 34: UE satisfaction ratio for different number of subnetworks using IBE aware resource coordination.

The results indicate that the XR capacity increases from 32 subnetworks performing SNE-HC
communication when using the normal sidelink resource selection procedure to at least 38 subnetworks
when the IBE aware allocation is introduced, i.e., about 19% improvement. Similarly, for HC-HC
communication, the XR capacity increases from 34 subnetworks using the normal procedure to at least
38 subnetworks with the introduction of IBE aware allocation.

These results highlight the effectiveness of IBE aware allocation. However, it should be noted that this
is mainly beneficial in the cases where the required allocation to convey the traffic is limited to a few
interlaces, as is the case for the pose/control traffic, where 1 interlace is sufficient for transmitting the
frequent but rather small 100B periodic payloads. That is because in such cases more transmissions are

frequency multiplexed, which translates to more IBE leakage to interlaces of neighbouring
transmissions.

5.3 Opportunistic usage of licensed available resources for subnetworks

A HC device should support multiple simultaneous active systems, allowing it to function both as a device
within a wide area network (WAN) and as an AP that can create and manage subnetworks. To support
future communication features with enhanced spectrum utilization, these UEs will include advanced
front-end modules designed to handle multiple frequency bands simultaneously. This enables both
inter-band and intra-band carrier aggregation (CA) and dual connectivity (DC) to boost coverage and
capacity using new spectrum bands. These devices will also combine CA/DC and MIMO, using shared

antennas for different frequency bands, facilitated by dual resonance and multiplexers for efficient
signal separation.
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However, the introduction of increased spectrum and band combinations in 6G increases the potential
for self-interference and sensitivity degradation, posing significant challenges. Network operators must
meticulously plan spectrum usage to mitigate these issues, which can increase roll-out costs and
constrain spectrum utilization. Moreover, UE vendors face the pressure to develop robust designs
capable of managing these complexities, resulting in more intricate hardware and stringent
conformance testing requirements.

Self-interference and sensitivity degradation are critical challenges, especially when employing CA/DC.
These issues arise from the simultaneous operation of multiple bands in different link directions, causing
interference between different frequency bands within the same device, as illustrated in Figure 35.

2nd harmonic interference

n2 (1900MHz) n77 (3800MHz)

Figure 35: Example of self-interference which can lead to sensitivity degradation

This kind of interference can manifest as harmonics, harmonic mixing, intermodulation distortion (IMD),
or cross-band isolation interference, all of which degrade the receiver's sensitivity. The impact of that is
substantial, affecting WAN communication by causing dropped calls, reduced data rates, and increased
latency. As an example from current 5G NR specifications TS 38.101-1 clause 7.3 [39], over 66.8% of the
band combination cases for 3 CA can experience intermodulation issues, making it difficult to fully utilize
the available spectrum. It is important to note that 3GPP permits a degree of degradation when the UE
transmission emissions overlap with its own receiver band during CA/DC. This is achieved by relaxing the
reference sensitivity requirements by up to a maximum sensitivity degradation (MSD) limit. However,
that negatively affects the uplink link budget and throughput, making it a less desirable solution.
Alternatively, using more advanced RF front-end could mitigate these issues, though this would
significantly increase the overall cost and size of the UE implementation [44].

The specification of 6G subnetworks can offer a solution to overcome these issues and improve
spectrum utilization. The solution consists of enabling subnetworks to opportunistically use spectrum
resources that would otherwise be poorly utilized for WAN communication due to sensitivity
degradation issues. That is further motivated by the short-range communication nature of subnetworks,
meaning that they can operate at low power levels, therefore having reduced interference impact to the
WAN. Figure 36 illustrates a procedure which can be executed between the HC device acting as AP for a
subnetwork and the NW node.
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HCUE NW

Connection establishment including subnetwork configuration with
exchange of HC and SNEs devices capabilities to NW

Request for frequency band to operate

subnetwork including subnetwork priority

Generate list of candidate band(s) for
subnetwork operation (targeting to
improve resource utilization while

minimizing degradation of WAN)

< List of candidate band(s) for subnetwork
operation

Frequency band and resource
selection procedure considering
common bands, self-interference

and co-existence issues

Request for selected subnetwork band/resources —pf

Create subnetwork grantincluding
restriction to use the band/resources

- Grant of subnetwork band/resources

Initialize subnetwork operation on
NW granted bands, or fallback to
unlicensed band if NW is unavailable
or granted bands are insufficient
[

Figure 36: Example of signalling where the HC device acting as access point of a subnetwork obtains radio resource from NW.

The proposed procedure involves the UE requesting a frequency band to operate a subnetwork, and the
NW responds with a list of candidate bands, often those underutilized in the WAN. The UE then analyses
these options, prioritizing those which causes the least self-interference and least co-existence issues to
determine the most suitable band for its subnetwork. The NW ultimately grants a band (or resources of
a band) from the UE's preferred subset, ensuring quality of service (QoS) and preventing interference
with neighbouring subnetworks. Constraints to the use of the resources may also be imposed, e.g.,
maximum transmit power allowed is -10 dBm. Notably, unlicensed bands can also be selected, offering
additional bandwidth or a fallback option when coverage is limited, i.e., the UE should only use the
licensed spectrum resources while it is allowed by a grant or semi-static configuration.

An advantage of the proposed procedure, in addition to the improved utilization of available spectrum
and reducing self-interference, is in the use of licensed spectrum where devices are not required to
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perform channel access procedures involving LBT. As discussed in previous part, LBT can be non-
deterministic and introduce delays, hindering efficient communication. In licensed spectrum, there are
less strict emission requirements since there is no incumbent technology operating outside the control
of the parent network. This allows for more flexible resource allocation schemes, rather than the
interlace-based approach required in unlicensed spectrum to meet OCB and PSD requirements.

Below, we analyse the performance of subnetworks following the same consumer use case assumptions
as stated in previous parts. So here again, we follow the same slot structure and traffic assumptions as
those listed in Table 4. However here we consider that the UEs use licensed spectrum, therefore no LBT
procedure is needed. Also, in the license band, the sub-channel RBs can use the contiguous allocation.

Analysis of opportunistic use of licensed spectrum

Figure 37 shows the XR satisfaction ratio results versus the number of deployed subnetworks using a
licensed band.
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Figure 37: UE satisfaction ratio for different number of subnetworks in licensed band.

The results indicate a clear improvement in XR capacity when subnetworks use the available licensed
band compared to the results from the semi-static channel access analysis. For SNE-HC communication,
the XR capacity increases to between 15 and 17 subnetworks without and with IBE reduction,
respectively, in separate bands, and to between 9 and 10 subnetworks without and with IBE reduction,
respectively, in a shared band. In the latter case, it means almost 67% improvement relative to the
unlicensed band performance with semi-static channel access shown before. For HC-HC communication,
the XR capacity supports more than 20 subnetworks in both shared and separate bands.
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This improvement is primarily due to the elimination of the need for LBT, which removes associated
delays. Additionally, there is no requirement for the extra guard-period symbol, thus avoiding the
capacity reduction it would cause. Furthermore, the use of contiguous RB allocation in the licensed band
reduces the impact of IBE compared to the interlaced allocation in the unlicensed band. These results
highlight the benefits of using licensed available spectrum for subnetworks whenever possible, for
example, when they operate in coverage of a network which has underutilized spectrum.

5.4 Summary

In this chapter, we have studied various aspects to enhance RRM for subnetworks in licensed and
unlicensed bands. The analysis covered intra- and inter-subnetwork communication based on sidelink
in shared bands and in dedicated bands, considerations for semi-static channel access in unlicensed
bands, and opportunistic usage of licensed available resources for subnetworks. The evaluation was
conducted for a consumer use-case scenario, with performance assessed in terms of XR capacity.

The evaluation highlighted the significant impact of IBE on subnetwork communication. IBE, caused by
transceiver impairments, leads to substantial interference, particularly in scenarios where adjacent
resources are used by different transmitters. This interference is more pronounced in unlicensed bands
with interlaced resource allocation, resulting in performance degradation under high load conditions.
The analysis showed that IBE mitigation by an enhanced UE front-end with lower IBE general term or by
applying an IBE-aware resource coordination can reduce these issues, improving the capacity.

In addition, the consideration of dynamic channel access in unlicensed bands revealed it as a main
bottleneck for performance. Dynamic channel access suffers from resource contention and extended
channel occupancy with high load traffic, significantly impacting performance of low delay budget
communication. The evaluation indicated that dynamic channel access leads to rapid degradation in
satisfaction ratios with increasing numbers of subnetworks, particularly in shared bands, calling for
enhanced channel access schemes.

Further, the consideration of semi-static channel access for subnetworks in unlicensed bands
demonstrated the benefits of predefined channel access timing structures. Semi-static channel access,
unlike dynamic channel access, offers more deterministic communication and reduced latency in
controlled environments. The evaluation indicated that semi-static channel access using a modified
sidelink slot structure which satisfy regulatory requirements can significantly enhance the capacity,
especially for HC-HC communication in shared bands, by minimizing LBT blocking and transmission
collisions.

Lastly, the opportunistic usage of licensed available resources for subnetworks presented a promising
solution to overcome sensitivity degradation issues and improve spectrum utilization. The analysis
showed that the use of licensed spectrum resources for subnetworks, which may be underutilized
resources for wide area communication, reduces delays and increases capacity, since it is not limited by
LBT procedures. The contiguous RB allocation in licensed bands further reduces the impact of IBE
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compared to interlaced allocation in unlicensed bands. Therefore, it is recommended that the
opportunistic usage of licensed available resources should be prioritized for devices within coverage,
while unlicensed bands should serve as a fallback solution for subnetworks unable to obtain licensed
resources from a provider or operating out of coverage.
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6 DETECTION AND MITIGATION MECHANISM OF EXTERNAL INTERFERENCE

Reliable communication in dense in-X subnetworks is increasingly threatened by external interference,
which remains largely unaddressed in existing RRM research. While inter-subnetwork interference is
typically managed through centralized or distributed coordination among subnetworks, external
interference introduces a unique set of challenges due to its unpredictable, uncontrollable, and often
malicious nature.

External interference in dense in-X subnetworks refers to unwanted signals or disruptions originating
from sources outside the intended system, which degrade communication performance. These sources
fall into three main categories:

e Natural interference, caused by environmental phenomena such as atmospheric noise,
lightning, or solar flares. These can introduce random, often severe, disruptions.

e Unintentional interference, resulting from devices not part of the in-X system but operating in
the same frequency band—e.g., industrial machinery such as motors, conveyor belts, and
welding equipment can emit electromagnetic noise.

e Deliberate interference, commonly referred to as jamming, is introduced with the intention to
disrupt network communications. This includes:

o Constant jammers that emit continuous signals.

o Reactive jammers that transmit only when activity is detected.

o Pulsed jammers that intermittently emit disruptive bursts.

o Intelligent jammers that adapt their strategies over time to avoid detection.

In dense and mission-critical deployments like in-factory environments or immersive consumer
applications, in-X subnetworks are especially vulnerable to these forms of interference. Disruption in
such environments can lead to system-wide communication breakdowns and operational failures. For
this reason, effective detection and mitigation mechanisms for external interference are essential.

Several countermeasures can be employed to defend against deliberate jamming. Frequency hopping,
for example, increases unpredictability, making it harder for jammers to disrupt transmissions.
Additionally, Direction-of-Arrival (DoA) estimation using antenna arrays can identify the source of
interference, enabling beamforming to nullify its effect.

Beyond deliberate jamming, cross-technology interference also poses a substantial challenge in dense,
heterogeneous environments—especially in unlicensed or shared spectrum bands. Here, multiple
wireless technologies (e.g., Wi-Fi, ZigBee, NR-U) coexist with incompatible protocols and potentially
overlapping channels, leading to frequent collisions and packet loss.

To address these challenges, this chapter presents a comprehensive framework that spans from
detection and modelling to resource management and receiver-level mitigation techniques. It includes:

e Astochastic external interference model capturing time-frequency dynamics and integrating
realistic jammer behaviours.
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e A centralized RRM algorithm (GDRA) using gradient descent for joint sub-band allocation and
power control under interference-aware constraints.

e Modifications to two state-of-the-art benchmark algorithms, SISA and SIPA, to explicitly
account for external interference power in ISR metrics.

e A performance evaluation of outage probability and SE across scenarios with and without
interference awareness, demonstrating the superiority of the proposed methods.

e Adedicated section on robust receiver design under impulsive interference using LLR
approximation techniques. The framework supports online, short-packet parameter
estimation, enabling efficient demodulation under dynamic interference conditions.

e A practical protocol for managing LLR approximation in subnetwork nodes with constrained
computing resources, enabling real-time selection and reporting of best-fitting functions for
LLR estimation.

By combining network-level mitigation through intelligent RRM with device-level adaptability via
efficient receiver approximation, the solutions presented offer a holistic and scalable response to the
growing threat of external interference in in-X subnetworks.

6.1 Robust Radio Resource Management for In-Factory Subnetworks under External
Interference

Unlike inter-subnetwork interference, external interference is inherently unpredictable and not directly
manageable by network operators. In this section again we assume a centralized control framework,
where a 6G base station coordinates and manages all subnetworks. This centralized approach effectively
mitigates inter-subnetwork interference through strategic resource allocation and coordinated
management. However, external interference remains a significant challenge due to its unpredictable
nature and lack of operator control. To enhance the reliability and robustness of in-X subnetworks, we
propose an approach that explicitly integrates external interference considerations into the resource
allocation process.

Specifically, we address the joint sub-band allocation and power control problem within densely
deployed InF-S in environments affected by external interference. By integrating external interference
awareness into RRM decisions, our method ensures robust performance, significantly improving
operational stability and QoS compliance in realistic industrial scenarios.
The system model generally follows the description provided in Section 3.1.1.1, with the key difference
that, in this scenario, small-scale fading varies across different sub-bands. This distinction arises due to
the frequency-selective nature of the industrial wireless environment, where multipath propagation
conditions differ significantly across frequency sub-bands. As a result, the wireless channels experience
distinct fading patterns depending on their operating sub-band. Consequently, the channel gain matrix
has dimensions K X N X N, explicitly capturing these sub-band-dependent variations. This refinement
ensures a more accurate and realistic representation of channel characteristics, ultimately enhancing
the effectiveness and reliability of the resource allocation strategies employed.
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6.1.1 External Interference Model and Problem Formulation

External interference in the considered environment originates from multiple mobile interference
sources, represented as the set 7 = {I;, I, ..., I;}. These sources operate within the same frequency
bands as the InF-Ss and follow predefined trajectories across the factory floor.

Each sub-band is independently affected by external interference, which follows a Poisson traffic model.
Packet arrivals in each sub-band adhere to a Poisson process characterized by an average arrival rate A.
Interference activation on a sub-band occurs whenever at least one packet arrives within a given time
interval. Regardless of the number of arriving packets within that interval, interference power remains
constant once activated. The external interference power level relative to the maximum transmission
power is formally defined as:

lext(dB) = Pmax(dp) T @,

where a represents the interference power ratio in dB, indicating the strength of external interference
sources relative to the maximum transmit power used by the subnetworks. Given the short-range nature
of industrial wireless operations, HCs and SNEs typically utilize similar power levels. However, the actual
received interference power varies depending on the distance between the HCs and interference
sources, as well as the channel conditions at any given moment.

To accurately detect and measure external interference, we assume the implementation of a periodic
detection mechanism using sounding reference signals and scheduled silent slots. Subnetworks
periodically transmit reference signals, enabling neighbouring subnetworks to estimate CSl and measure
internal interference. Complementing this, scheduled silent slots ensure HCs can precisely measure
external interference without contamination from network transmissions, as subnetworks remain
inactive during these intervals. Measurements from these silent periods are reported back to the CRM
via dedicated backhaul links. Given limited temporal fluctuations in interference and channel conditions,
these measurements remain valid and reliable for subsequent resource allocation cycles.

The main objective is to develop a resource allocation strategy that jointly optimizes sub-band selection
and transmit power to minimize the outage probability while satisfying a predefined target SE, denoted
as SE¢arget- This target ensures a baseline QoS, essential for mission-critical applications demanding
reliable communication and high data throughput.

The problem formulation closely follows the approach described in Section 3.1.2.1, with the primary
difference lying in the calculation of SE for subnetwork n on sub-band kk. Specifically, the SE under
consideration here includes the effects of external interference and is calculated as:

k k
SEK = log, (1 + Mrindi )

Y?n,n"'ZmEN\{n} hfn,nafnpm +1f

where the additional term ZmeN\{n} hl‘n,nal‘an represents the inter-subnetwork interference caused
by simultaneous transmissions from other subnetworks, and IX denotes the external interference
power, originating from external radio technologies operating in the same frequency band. These
interference components differentiate this scenario from the one detailed in Section 3.1.2.1,
necessitating tailored resource allocation strategies to effectively mitigate their impacts.
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6.1.2 Gradient Descent-based Resource Allocation Algorithm

The proposed Gradient Descent-based Resource Allocation (GDRA) algorithm is described
comprehensively in this section, outlining a detailed, two-stage approach for joint sub-band allocation
and power control optimization.

In the first stage, the algorithm relaxes the original problem constraints by allowing continuous power
distribution across multiple sub-bands. Specifically, it assigns power levels P¥ to each sub-band k for
subnetwork nn, constrained by Y>X_, P¥ < P...,¥n € V. This initial relaxation provides the flexibility
necessary for gradient-based optimization methods, enabling the identification of optimal power
allocations. During this process, a softmax function with a low-temperature parameter t\tau is employed
to produce nearly binary (one-hot) power distributions across the available sub-bands, while still
remaining differentiable for gradient updates. After this preliminary step, each subnetwork selects the
sub-band achieving the highest SE, thus enforcing the single sub-band usage constraint.

Notably, this first stage alone can also function as an effective standalone sub-band allocation technique,
as the Gradient Descent-based Sub-band Allocation with maximum transmit power (GDSA-maxPower).
This alternative scenario, which involves assigning maximum allowed transmission power to the chosen
sub-band, is independently evaluated in Section 6.1.4.

In the second stage, the algorithm optimizes the transmit power specifically for the sub-bands selected
in stage one. By fixing sub-band allocation, the algorithm concentrates solely on power control
adjustments. Power levels are continuously tuned within the range 0 < P, < B,.x using gradient
descent, guided by a sigmoid-based differentiable representation. This approach enables end-to-end
optimization, facilitating efficient gradient descent.

The detailed GDRA algorithm for joint sub-band allocation and power control is summarized below:
GDRA Algorithm for Joint Sub-band Allocation and Power Control:

Inputs: Channel gain matrix H

Initialization: Initialize power p(O) and selection variable 8(®) as zero matrices

Stage 1: Sub-band Selection

1. Compute the power distribution across sub-bands using:
(-1
P = softmax( - > * Prax

2. Calculate SE using the equation:

hk . akp
SEX = log, (1 + T k)
Ymn + Zme]\/\[n} hm,naum + In

3. Optimize sub-band allocation using gradient descent by maximizing the minimum SE across
subnetworks.

4. ldentify optimal sub-band k*(n) for each subnetwork, based on maximum SE.
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Stage 2: Power Control Optimization
1. With the selected sub-bands fixed, apply power control optimization:
for fixed sub-band selection P, = P, - 6(p,,) for fixed sub-band selection
2. Recalculate SE using the previously defined SE formula.
3. Adjust power values iteratively through gradient descent, ensuring constraints are respected.

Output: Final optimized sub-band allocations and transmit power levels for all subnetworks.

6.1.3 Modified SISA-SIPA Algorithm

In this section, we describe the necessary modifications to two SoA resource management algorithms:
SISA, originally proposed in [25], and SIPA, as introduced in[45]. These algorithms aim to minimize the
sum Interference-to-Signal Ratio (ISR) across the entire network. Originally, they assume scenarios free
from external interference. However, in practical deployments, subnetworks are subjected to additional
external interference sources, which must be explicitly considered.

6.1.3.1 External-Interference-Aware SISA

We first discuss modifications to the SISA algorithm, which iteratively allocates sub-bands to
subnetworks. The original algorithm begins with an arbitrary allocation, progressively refining sub-band
assignments by sequentially analysing each subnetwork. Atiteration d, subnetwork n selects a sub-band
kk based on the minimization of mutual ISR, defined as:

k* = argmingey Zmeﬂ%(Wnlin + W),

where c/lj,ﬁ denotes the set of subnetworks allocated to sub-band k after d — 1 iterations, and (WX, =
w%m
wyy

gain powers of interfering and desired channels, respectively.

) represents the ISR from subnetwork mm to subnetwork n. Here, wX,, and wk denote the channel

To incorporate external interference into the SISA algorithm, we introduce an additional term
representing external interference ISR. Consequently, the modified selection criterion becomes:

k* = argmingey (Zmeﬂ%(Wnlin + W) + W;f,ext)r

X . . .
where W,{fext = w—’}c captures the ISR caused by external interference sources. By adding this term, the
n

modified algorithm proactively selects sub-bands with lower external interference, thus enhancing
robustness and reliability.
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6.1.3.2 External-Interference-Aware SIPA

Similarly, the SIPA algorithm is adapted to explicitly account for external interference. SIPA iteratively
selects transmission (Tx) power levels from a discrete set of available powers, denoted as P. Initially,
random power levels are assigned, and the algorithm sequentially optimizes each subnetwork's Tx
power to minimize mutual ISR while keeping other subnetworks' power levels fixed. With external
interference incorporated, the modified SIPA selection criterion at iteration d becomes:

[P0

m k P
—mpl +

1
O (P) = Tmeu, ( P@D]_ Wﬁn) + 7 W),

where P@~D denotes the vector of Tx powers selected by subnetworks after d — 1 iterations, and
% - . . e .. .
W,{fext = w—’% guantifies the ISR from external interference. This modification explicitly encourages higher

Tx power allocations under scenarios experiencing stronger external interference, ensuring improved
communication reliability.

The modified SIPA algorithm operates iteratively, updating each subnetwork's Tx power L times,
identical to SISA. The comprehensive algorithm is outlined below:

Algorithm: External-Interference-Aware SIPA for Sub-band k
Input:
e Set Ay of subnetworks on sub-band k.
e Mutual ISR values (WX, Vn,m € Ay)
e Discrete set of transmission powers, P
Initialization:
Initialize Tx power levels p© randomly from P.
Procedure:
For each iteration! = 1to L:
For each subnetworkn = 1to N:
Setiteration number: d = N(l—1) +n

For each power level P € P:
Compute cb,(qd) (P) using the modified criterion.
Update Tx power level of subnetwork n to minimize c|>,(1d) (P).
Update the Tx power level for subnetwork n: [P(d)]n =argminpep cb,(qd) (P)

Output: Optimized power allocation P@ after completing all iterations.
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6.1.4 Simulation results and analysis for RRM in the presence of external interference

In this section, we evaluate the performance of the proposed GDRA algorithm for joint sub-band
allocation and power control. The GDRA algorithm is benchmarked against SoA algorithms, specifically
the modified SISA and SIPA algorithms. Additionally, to provide a broader assessment, we include
comparisons with two additional strategies: SISA combined with maximum transmit power and the
GDSA approach paired with maximum transmit power.

The external interference model utilized is detailed in Section 6.1.1. In this evaluation, a single mobile
external interference source is considered, generating independent interference across different sub-
bands. Unless explicitly stated otherwise, the simulations employ parameters summarized in Table 5.
Specific parameter adjustments are highlighted where necessary to assess their impact on algorithm
performance. All simulations were conducted using a custom-built simulator implemented in Python,
specifically developed to model in-X subnetwork behaviour, interference dynamics, and RRM algorithm
execution in a controlled and flexible environment.

The key performance metric evaluated is the outage probability, defined as the probability that the
achieved SE falls below the target SE, SE ¢, get-

Table 5: Simulation Parameters for RRM under external interference

Parameter Value
Factory area 20 mx20 m
Number of subnetworks 20
Number of sub-bands 4
Subnetwork radius 0.5m
Number of devices per subnetwork 1
Minimum distance between HCs 1m
SNE-to-HC minimum distance 0.3m
Shadowing standard deviation 4dB
DL clutter density, clutter size 0.6,2
De-correlation distance 5m
Maximum transmit power 0dBm
Interference power ratio -20dB
Number of sub-bands with active interference 2
Average arrival rate for external interference 0.3
Sounding reference signal period 100 ms
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Maximum velocity of InF-S and external interferer | 10 m/s
Sub-band bandwidth 30 MHz
Center frequency 10 GHz
Noise figure 5dB
Temperature parameter for softmax 0.001
Batch size 20000
Number of epochs 1000

Figure 38 illustrates the outage probability of individual links across all subnetworks as a function of the
target SE, SEiyge- We compare the performance across three distinct scenarios: No External
Interference, External Interference-Unaware, and External Interference-Aware.

In the No External Interference scenario, the only interference considered is from other subnetworks
within the system. The External Interference-Unaware scenario introduces external interference sources
that the algorithms are not configured to address or mitigate explicitly. Conversely, in the External
Interference-Aware scenario, algorithms explicitly adapt their resource allocation decisions to account
for external interference.

In the No External Interference case, all algorithms demonstrate low outage probabilities, effectively
handling inter-subnetwork interference. However, under the External Interference-Unaware scenario,
outage probabilities rise significantly, particularly at higher SE, g, highlighting the consequences of
neglecting external interference. The External Interference-Aware scenario shows notable
improvements across all algorithms. Nevertheless, GDRA consistently provides superior performance.
For instance, at SErgec = 5, GDRA reduces outage probability to 0.008, representing around a 90%
reduction compared to 0.077 for SISA-SIPA.
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Figure 38: Outage probability of individual links across all subnetworks, under three scenarios: No Interference, Interference-
Unaware, and Interference-Aware.

Figure 39 presents the CDF of the average SE across subnetworks. This figure indicates that while
optimized power control significantly reduces outage probabilities, methods employing maximum
transmit power achieve higher SE at upper percentiles. Overall, gradient descent-based algorithms such
as GDRA consistently outperform benchmarks, particularly in interference-aware scenarios,
emphasizing their suitability for mission-critical communication systems and other scenarios demanding
high spectral efficiency.
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Figure 39: CDF of the average SE across all subnetworks, under two scenarios: Interference-Unaware and Interference-Aware.
Figure 40 further evaluates the algorithms under varying external interference power levels. GDRA
consistently yields the lowest outage probability, notably ensuring 99% reliability at SE,rgec = 3 bps/Hz,

substantially outperforming benchmark methods that exhibit around 25% outage probabilities. At lower
external interference power levels, GDRA outperforms GDSA-maxPower due to its optimized power
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allocation. However, as external interference approaches the maximum transmit power P,,,,, GDRA and
GDSA-maxPower performances converge, indicating reduced effectiveness of power optimization under
extreme interference conditions.
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Figure 40: Outage probability of individual links across all subnetworks, under varying levels of external interference power.

Figure 41 analyses the performance impact when interference affects multiple sub-bands. With an
increasing number of interfered sub-bands K;,;s, the outage probability rises across all methods. Yet,
GDRA maintains a consistently lower outage probability than SISA-SIPA, demonstrating superior
adaptive interference management. The performance advantage of GDRA becomes even more
pronounced as interference conditions worsen, underscoring its robustness.
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Figure 41: Outage probability of individual links across all subnetworks, under scenarios with no interference and with
interference activated on 1, 2, and 3 sub-bands.
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Figure 42 shows the CDF of transmit powers utilized across subnetworks, highlighting that algorithms
tend to employ higher power levels to maintain target SE under increased external interference. As
interference intensifies, all methods shift towards higher transmit powers.

1

- = = = Interference-Unaware - SIPA
09 r |- - - - Interference-Unaware - GDRA
--------------- Interference- Aware, oo = —20 - SIPA
08k Interference-Aware, oo = —20 - GDRA
: Iuterference-Aware, o = —3 - SIPA
Interference-Aware, o« = —3 - GDRA |7

07

06 L
[ s
Qo5¢f ra
o ,

04+F -

’ 7
K ’ //
03r . -
7 ./FF o
02t . - ) {
- o
L y
. -
. o
01 _-- e 1
_-v—"“'""—a‘
0 .
-10 8 -6 4 2 0

Transmit power (dBm)

Figure 42 CDF of transmit powers across all subnetworks, under varying levels of external interference power.

While the asymptotic complexity for SISA, SIPA, and GDRA algorithms simplifies to 0 (KN?) with fixed
parameters [25],[45],[46], GDRA distinguishes itself through efficient parallelization and GPU-based
computation. Table 6 Execution Time per Sample for Different Batch Sizes and Algorithms summarizes
the execution time per sample, demonstrating GDRA’s superior computational efficiency, particularly at
increased batch sizes, due to effective batch processing capabilities.

Table 6: Execution Time per Sample for Different Batch Sizes and Algorithms

Algorithm | Batch Size | Execution Time (s)
GDRA 200 0.1925
GDRA 2000 0.0509
GDRA 20000 0.0213
SISA-SIPA | - 0.0243

6.2 Performance evaluation framework for efficient receiver adaptation over subnetworks.

In this section, we complement the radio resource management approaches tailored to external
interference, with receiver-level strategies, targeting non-Gaussian impulsive noise.

Page 87 of 99



Project: 101095738 — 6G-SHINE-HORIZON-JU-SNS-2022

6.2.1 Receiver Design approaches

To achieve reliable and efficient communications, it is imperative to consider the impulsive nature of
interference when designing receivers. Interference modelling frequently exhibits impulsive
characteristics, which can be represented using various statistical methods and probability distributions.
However, designing a dedicated receiver for each specific scenario is impractical due to the significant
temporal and spatial variability of interference characteristics. Consequently, there is a strong need for
a receiver architecture capable of adapting to a broad spectrum of interference models, encompassing
both impulsive and non-impulsive behaviours, and accommodating varying degrees of impulsiveness.

In the realm of receiver design, we discussed in D4.1 several approaches, each with its own set of
advantages and disadvantages. Among these, we focused mainly on direct LLR approximation which
stands out due to its simplicity and ability to facilitate online learning. For further information we refer
the reader to D4.1.

Recalling that achieving exact LLR values is computationally prohibitive, to address this, multiple
approximations can be utilized. These approximations can belong to different families, such as piecewise
functions, rational functions, and more. Selecting the optimal LLR approximation typically involves
extensive Bit Error Rate (BER) or Frame Error Rate (FER) simulations to identify the best-performing
function. While effective, this process is time-consuming and computationally intensive.

To overcome these challenges, we introduce in the following? a novel framework that derives a new
metric for selecting the best LLR approximation. This metric is designed to adapt well to varying channel
conditions while maintaining low complexity. By leveraging this framework, we can achieve efficient
online learning without the need for exhaustive simulations, thus streamlining the selection process and
enhancing overall performance.

6.2.2 Approximation functions

Different functions may apply, continuous functions (e.g., Identity functions, Constant functions,
polynomial functions, quadratic functions, cubic functions, etc.), or non-continuous functions (e.g.,
rational functions, modulus functions, Dirichlet functions, step functions, piecewise-defined functions).
Combination of one or more of these sets of functions will form a pool of functions to select from the
best that can describe the channel. By enriching this pool, the probability to reach the ideal function
representation will increase but with the trade-off with additional searching complexities. It is worth
noting that, by enabling piecewise functions this will give additional level of control in terms of
complexity and accuracy where, the more parameters are defined or included to the piecewise function,
the closer the function will be to the truth or the best representation of the samples. Furthermore, one
can have a combination of simple functions (e.g., linear functions) that each can be mapped to a
segment.
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Functions that best approximate the channel interference are crucial to the LLR estimation process, as
they can capture accurate representations of the channel interference, saving in complexity. As
discussed, this is a two-step process where first, a function that best adapts to the channel interference
level and type is selected and applied. Once done, the parameter estimation for that function takes
place.

So, we consider parametric approximation Lg of the LLR. The family of functions is Lg chosen for its
simplicity and flexibility to represent the LLR in different channel types. To narrow down the search, we
consider the estimated LLR Ly is an odd piece-wise function. We consider both demappers L, and Ly,
[47],[48] as shown in Figure 43, that outperforms other LLR approximations as shown in [48], in terms
of performance.

Lap(y) = sgn(y) min(aly|,b/|y|),

Lapc(y) = sgn(y) min(aly|,b/|y|, c).

5 I L 1 1 1
-4 -3 2 -1 0 1 2 3 4

Channel Output (Y)

Figure 43: Comparison of the optimal LLR shape with different approximations

The LLR approximations depend on several parameters, which must be optimized to make the
approximation as close as possible to the LLR. Several parameter estimation methods are considered in
the literature. In [47],[49],[50], the authors proposed a framework to enable online real-time parameter
estimation, but they consider long block length regime. For short packets as in in-X Subnetworks the
proposed framework suffers from significant performance degradation due to the lack of availability of
large number of samples. To solve this problem, authors in [48] proposed a solution that enables
unsupervised learning in the short block length regime which is suitable for in-X Subnetworks.
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6.2.3 Parameter estimation

The LLR approximations depends on two to three parameters, grouped here under the variable 8 which
must be optimized to make the approximation as close as possible to the LLR. In [39],[40], authors
proposed a method for supervised learning of 8. The receiver is looking for 8 that maximizes

CLp =1—E[log,(1 + e *te(M)],

This search is to approach the capacity of the channel as closely as possible with the approximate
likelihoods.

However, it should be noted that an actual implementation cannot be based directly on expectation due
to the lack of the pdf. From a learning sequence (x4, ..., X,) and the corresponding output (y4, ..., ¥»),
the receiver optimizes a version of the aforementioned Equation where the expectation is replaced by
an empirical mean,

CLo =1 - XiLillogy(1 + e~¥itoOD)].

The LLR data A(y) is equivalent to that of the probability a posteriori p(x|y) = Pr[X = x|Y = y]

because p(x|y) = Similarly, the LLR approximation Lg (y;) provides an approximation of the

—r
(1+eXAMy

a posteriori q(x|y) = It is then possible to show that the (;, criterion is bounded and the

1
(1+e*Le(i)y
bound is reached when q(x|y) = p(x|y). More precisely, the difference between C; and capacity is

the Kullback-Leibler distance between a posteriori and its approximation.

D(q&xINIl pCxly)) = J 1092 y% p(x1y) dxp(y)dy,

Where p(y) is the density of the channel output.

Receivers using LLR approximation should be compared to identify the best balance between simplicity
and performance. However, performance should be evaluated based on the error rate, which can be
computationally intensive. For example, to analyse the robustness of the previous approximation L,
for a noisy a-stable channel with parameters (a=1.4)and (y =0.4), authors in [39] show, in the binary
error rate for a regular LDPC code (3,6) of size 20000 using this approximation for different parameter
values (a ) and ( b ). These contours are superimposed on the zone of parameters that optimize the
criterion () to verify the adequacy between the receiver and this type of channel.
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Figure 44: Optimal region and BER as a function of a and b

This approach of comparing LLR approximation stemmed by using the KL divergence is crucial for
selecting the best LLR approximation, however, it can quickly deplete computational resources,
especially for receivers that are not well-suited to the channel model. This inefficiency arises because
extensive simulations and evaluations are required to identify the optimal LLR approximation, which is
computationally burden.

To address this challenge, we propose a new criterion based on measuring the MSE between the true
LLR and the approximated LLR to rank the approximated LLR, as shown in the following:

MSE = [7_[A() — Le)*p(»)dy.

Here, A(y) represents the true LLR, and Lg (y) represents the approximated LLR. The term [A(y) — Lg
(¥)])%p(y) ensures that the approximation error is weighted by the likelihood of y, emphasizing accuracy
in regions where y is more probable.This proposed metric is justified by the need for an Lg(y) receiver
to best approximate the likelihood of A(y) . This approximation must be more accurate for the most
likely values of y, which is why different regions need to be weighted differently. This weighting is
represented by the factor p(y), which denotes the probability distribution of y.

To formalize this, consider the integral overxin the previous equation. We aim to find two
constants, Kand K', that can frame this integral, ensuring that the approximation remains within
acceptable bounds,

| ’
K[A®) = Le)]? < [ log T2Bp(x 1 y) dx < K'[AD) ~ Lo )T,
which shows the equivalence between the Kullback-Leibler distance and the MSE criterion:

KMSE <D(q(x1y) Il p(x1y)) <K' MSE,
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Thus, comparing receivers according to the KL criterion and the MSE criterion is a first coherent approach
and allows for quickly selecting the best LLR approximation. This criterion offers a more efficient method
for selecting the best LLR approximation. By focusing on the MSE, we can directly assess the accuracy of
the approximated LLR without the need for exhaustive BER simulations. This selection criterion is
straightforward to implement and can be executed online by edge devices with limited computational
capabilities. In the following section, we are going to introduce how such a criterion can be exploited in
the subnetwork context.

6.2.4 Insubnetwork receiver approximation

In this section, a solution for LLR approximation for nodes within a subnetwork is proposed. It consists
of an example protocol and details on how a subnetwork element could performed the described
approximations.

A first consideration is on the capabilities of the network element. Due to the compute resource
constraint nature of an SNE and LC, when compared to an HC, there could be scenarios where SNEs and
LCs would not be able to compute certain functions for approximations. This needs to be communicated
to the parent 6G network, so that proper function management can be applied. This can be done with
the first two steps in Figure 45, where LC is a presentation of either an LC or an SNE. Worth noting that,
if a subnetwork node cannot perform this approximation, then it will not be able to perform BER
estimation either.

A node in the subnetwork may have a set of preconfigured functions to apply to the channel and further
be configured to only apply a subset only of the functions based on, e.g., current levels of computational
delays. This is important to note, especially in cases where the latency requirements are strict, and
because the computational delay of each function may be known, but it is also a function of the current
CPU usage at the subnetwork receiver. The pool of functions will be designed based on modulation type
used by the subnetwork node, channel conditions, interference type, etc. Thresholds for computational
delay may be configured at the subnetwork node, under the form of a max time, a max CPU load, max
power spent in computing the function, etc. This constitutes the configuration of pool of functions and
estimation rules by the parent 6G network, in this case, a 6G-BS. This configuration is then delivered to
the subnetwork management node.
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Figure 45: Example procedure for reporting the best function approximating LLR and its validity window

Once this is complete, subnetwork nodes can start performing parameter estimation for the configured
function(s). Once parameter estimation is complete, the subnetwork node can now determine what the
best function(s) are. This is done based on the MSE values, estimated parameters, and the configuration
estimation rules received from the 6G-BS.

The subnetwork node can also estimate for how long the current functions are valid for, i.e., for how
long the subnetwork node will continue to use them for LLR estimation, which may be estimated as a
function of channel variations and interference level, in addition to other metrics.

With this procedure, the subnetwork node will perform MSE computation instead of BER, which could
be more efficient in terms of computation, latency, power consumption, overhead, etc., by incurring in
much lower costs for these metrics. The subnetwork node can select the best N functions with lowest
MSE value (where N is a positive integer). This can be useful for the parent 6G network to be able to test
its functions in the subnetwork domain, as they would be assessed in parallel for the same channel
conditions.
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6.3 Summary

This chapter addressed the often-overlooked problem of external interference in radio resource
management for dense in-X subnetworks. A key contribution is the modelling and incorporation of
stochastic external interference - originating from both benign and malicious sources - into a centralized
RRM framework. A novel gradient descent-based RRM algorithm (GDRA) was proposed for joint sub-
band and power allocation. The GDRA algorithm integrates interference-aware utility functions and is
validated through simulations that show up to 90% reduction in outage probability compared to
interference-unaware baselines.

The study further introduced enhanced versions of the benchmark SISA and SIPA algorithms by
integrating an external interference ISR term into their respective optimization objectives. Simulation
results confirmed the importance of interference awareness, especially in high-SE and multi-band
interference scenarios.

To complement RRM, this chapter also explored receiver-level strategies for mitigating performance loss
due to non-Gaussian impulsive noise. Various LLR approximation techniques were reviewed, with
emphasis on piecewise parametric functions offering high accuracy and low complexity. A procedure
was proposed for subnetwork nodes to dynamically select and validate the best LLR approximation
functions based on the MSE metric, enabling adaptive receiver operation under limited computational
budgets.

Together, these solutions form a robust and flexible framework for managing external interference in
in-X subnetworks. They enable not only reliable RRM under adverse conditions but also efficient real-
time receiver adaptation at the subnetwork edge. The results and proposed methodologies support the
robustness objective of the 6G-SHINE project, especially in environments with significant external
interference.

Page 94 of 99



Project: 101095738 — 6G-SHINE-HORIZON-JU-SNS-2022

7 CONCLUSIONS

The final results of the 6G-SHINE project on radio resource management (RRM) for dense and dynamic
in-X subnetworks are presented in this document. Through an integrated set of centralized, distributed,
and goal-oriented solutions, substantial progress has been made toward meeting the project's ambitious
targets on reliability, scalability, latency, spectral efficiency, and resilience to external interference.

A centralized RRM framework combining spatio-temporal attention-based LSTM prediction with
resilient deep neural network (DNN)-based resource allocation was developed to address the impact of
outdated CSI. With a 4-sample CSI delay, the proposed centralized method achieves a minimum spectral
efficiency (SE) that is 53% higher than the SoA without any predictor and 94% higher than the SoA with
a standard LSTM predictor. These gains were validated for dense deployments of 25,000 subnetworks
per km?, aligning with the project's objective of achieving approximately ten times the density of current
5G ultra-dense networks.

Complementing the centralized solution, a distributed RRM approach based on Graph Neural Networks
(GNNs) was proposed to enable autonomous power control in scenarios where global coordination is
limited. The GNN-based strategy improves spectral efficiency by approximately 7% under uniform
conditions and up to 13.16% under heterogeneous channel conditions compared to equal power
allocation, while relying on realistic over-the-air message passing mechanisms compatible with 3GPP
protocols.

We also introduced a goal-oriented RRM solution for mission-critical industrial automation, where
communication quality is jointly optimized with application-specific metrics, such as minimizing robot
mission completion time. By employing a Proximal Policy Optimization (PPO) reinforcement learning
method, the proposed mobility control algorithm achieves a 20% higher probability of maintaining the
same block error rate (BLER) as the SoA under a 0.5 ms latency constraint, significantly enhancing URLLC
performance in motion-intensive scenarios.

Recognizing the growing importance of shared-spectrum operations, the project developed enablers for
supporting dense subnetwork deployments in unlicensed or hybrid licensed-unlicensed bands. Semi-
static channel access techniques were shown to enable up to ten times higher XR capacity compared to
dynamic access methods, while licensed-assisted operation led to a 67% increase in the number of
supported subnetworks compared to semi-static access alone. Furthermore, mitigation of in-band
emissions (IBE) through device front-end improvements and coordination strategies contributed up to
40% additional capacity gain under high-density unlicensed operation.

The management of external interference, a critical challenge for in-X subnetworks operating in real-
world environments, was addressed through a two-pronged strategy combining robust resource
allocation and advanced receiver design. The Gradient Descent-based Resource Allocation (GDRA)
algorithm successfully limited spectral efficiency degradation to 9.7% in the presence of external
interference, outperforming state-of-the-art benchmarks, which experienced a 13.3% loss. On the
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receiver side, low-complexity yet robust likelihood ratio approximation methods were proposed,
allowing resilient decoding even in the presence of impulsive noise and jamming, with adaptations based
on real-time channel observations and minimal computational overhead.

The results demonstrate that the developed RRM strategies are capable of supporting dense,
autonomous, and resilient subnetwork deployments across industrial, consumer, and vehicular
domains. They deliver substantial improvements in reliability, scalability, spectral efficiency, and
interference robustness over current benchmarks, meeting or surpassing the technical targets
established for the 6G-SHINE project. These contributions form a strong foundation for future
advancements in enabling 6G subnetworks to operate effectively under the highly dynamic and
interference-prone conditions anticipated in next-generation wireless networks.
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